

November 28, 2023

No.1922/Env-SFD/MOEF/RO/BPL/EC-40MW

Director Ministry of Environment, Forest and Climate Change, Regional Office (WZ), E-5, Kendriya Paryavaran Bhawan, E-5 Arera Colony, Link Road-3, Ravishankar Nagar, Bhopal – 462016

Sub: Submission Environment Clearance Compliance Report for the period from April 2023 to September 2023 for Grasim Industries Limited, 40 MW Thermal Power Plant, P.O. Birlagram, Nagda, District Ujjain – 456 331, M.P.

Ref: Environment Clearance Issued vide File No. J-13011/18/94-IA II

Dear Sir,

This has reference to above cited environment clearance & condition prescribed therein and provisions of Section 10 of EIA Notification, dated 2006.

We are enclosing with this letter Six Monthly point wise Environment Clearance Compliance Report and summary of monitoring results for the period from **April 2023 to September 2023** of Grasim Industries Limited, 40 MW Thermal Power Plant.

We are also sending the compliance report to MoEF&CC Regional Office, Bhopal through e-mail address on rowz.bpl-mef@nic.in.

Hope you will find the information provided in order, we shall be happy to furnish further details / clarifications, if required.

Thanking you, Yours faithfully,

Shantanu Kulkarni President & Unit Head

CC:

- 1. Ministry of Environment Forest & Climate Change, New Delhi
- 2. Central Pollution Control Board, Zonal Office, Bhopal
- 3. Madhya Pradesh Pollution Control Board Bhopal
- 4. Assistant Director, Office of Textile Commissioner, Mumbai

Enclosed: As Above

Grasim Industries Limited

Staple Fibre Division

Birlagram - 456 331, Nagda (M.P.) INDIA Tele: +91 7366 246760-64 Fax : +91 7366 246024, 244114 CIN : L17124MP1947PLC000410 Website : www.adityabirla.com E-mail : grasim-sfd.nagda@adityabirla.com Regd. Office : P.O. Birlagram, Nagda - 456 331 (M.P.)

SIX MONTHLY COMPLIANCE REPORT OF ENVIRONMENT CLEARNACE FOR

GRASIM INDUSTIRES LIMITED, (40MW THERMAL POWER PLANT) BIRLAGRAM, NAGDA – 456 331 DIST. UJJAIN (M.P.)

Submitted to:

Ministry of Environment Forest & Climate Change, (WR Office) Bhopal Ministry of Environment Forest & Climate Change, New Delhi Central Pollution Control Board, Zonal Office, Bhopal Madhya Pradesh Pollution Control Board - Bhopal

Submitted by:

Grasim Industries Limited, (40MW Thermal Power Plant) Birlagram, Nagda – 456 331 District: Ujjain (M.P.) Period: APRIL 2023 –SEPTEMBER 2023 Submitted on: 1 DECEMBER 2023

Contents

Sr. No.	Title	Page No.
1	Introduction	1
2	Compliance Status of Environment Clearance for Grasim Industries Limited, 40MW Thermal Power Plant, Birlagram, Nagda – 456 331	2 - 6

List of Annexures

- Exhibit -1 Summary of Emission Monitoring results of reporting period
- Exhibit -2 Images of Treated Effluent Plant & Zero Liquid Plant
- Exhibit -3 Glimpse of plantation in the complex
- Exhibit -4 Image of the display board at Factory Gate showing environmental parameters for general public
- Exhibit -5 Ambient air quality monitoring results in Grasim Complex (SFD, EFD & CPP) of reporting period

Introduction

- 1. Grasim Industries Limited (GIL), incorporated on 25th Aug., 1947; is a flagship company of the Aditya Birla Group and India's pioneer in manufacturing of Viscose Staple Fibre (VSF) a man-made, biodegradable fibre with characteristics akin to cotton.
- 2. M/s. Grasim Industries Ltd. has four VSF Plants in India which are located at Nagda (Madhya Pradesh), Harihar (Karnataka), Kharach & Vilayat (Gujarat).
- 3. 40 MW Thermal Power Plant is coal based thermal power plant located at Birlagram, Nagda.
- 4. All the operation related permits, including Environmental Clearance from MOEF & CC and Consents to Establish (CTE) & Consent to Operate (CTO) has obtained from M.P. Pollution Control Board, Bhopal are in place.
- 5. Environmental quality monitoring in & around the Plant site is being carried out by M.P. Pollution Control Board, in-house Laboratory & NABL accredited laboratory on a regular basis.
- 6. 03 No. of Continuous Ambient Air Quality Monitoring Stations (CAAQMS) along with other Environmental Parameter from Grasim Complex (SFD, EFD & CPP) displayed on LED Board at main gate of the Plant Premises.
- 7. Online Continuous Emission Monitoring System (CEMS) is installed at stack and connected with M.P. Pollution Control Board and CPCB, New Delhi.
- 8. Industry has completed ZLD Project as per stipulation given by MPPCB, CPCB, & MoEFCC, Bhopal on 30.09.2021.
- 9. A vast green belt is developed to curb the emission and also to improve environmental conditions in & around Grasim complex.
- 10. Point wise compliance status of Environmental Clearance for Grasim Industries Limited, 40MW Thermal Power Plant Fibre Division, Birlagram, Nagda is furnished herewith;

Environment Clearance (Grasim Industries Limited, 40 MW Thermal Power Plant) MOEF Ref. O.M. No: J-13011/18/94-IA. II dated 01.03.1995 Period - APRIL 2023 – SEPTEMBER 2023

Sr.	Conditions and Environmental Safeguards	Compliance Status
	M/s Grasim Industries Limited may refer to proposal dated 26.08.1994 on the subject mentioned above. The Proposal has been examined and accorded clearance from environmental angle subject to effective implementation of the following conditions and environmental safeguards:	Acknowledged
1	All the conditions stipulated by the State Pollution Control Board shall be implemented effectively.	 Industry is complying the conditions laid down by state pollution Control Board and has valid consents & authorization issued by M.P. Pollution control board; Consent under The Water (Prevention and Control of Pollution) Act, 1974 issued vide Letter No. AW-56442 dated 02.08.2022 valid up to 31.07.2025. Consent under The Air (Prevention and Control of Pollution) Act 1981 issued vide letter no. AW-56442 dated 02.08.2022 valid up to 31.07.2025. Authorization under the hazardous waste rule issued vide No.AWH-52040 dated 01.09.2020 valid up to 28.05.2025.
2	A stack height of not less than 76 meters shall be provided along with ports for stack monitoring	A stack of 76-meter height constructed and stack monitoring port has been provided for sampling. Online Continuous Monitoring System (CEMS) is also provided at stack and connected to M.P. Pollution Control Board and Central Pollution Control Board, New Delhi.
3	The Electrostatic precipitators having an efficiency of not less than 99.8% shall be installed.	Two High Efficiency Electrostatic Precipitators having three field each has been provided to boilers, which are

Sr.	Conditions and Environmental Safeguards	Compliance Status
		performing efficiently to meet particulate emission norms. Emission monitoring is done and reports are being submitted to Regional Officer, MoEF&CC, Bhopal regularly. The current status of ESP efficiency is 99.86 %
4	The particulate emission shall not exceed the prescribed limit of 350 mg/Nm3 at any time	Two High Efficiency Electrostatic Precipitators have been provided to boilers, which are performing efficiently to meet particulate emission norms. Emission monitoring is done and reports are submitted to Regional Officer, MoEF&CC, Bhopal regularly. Summary of emission monitoring report for reporting period is enclosed as Exhibit -1
5	Dust suppression and dust extraction devices shall be installed in the coal handling area to ensure the level of dust within prescribed limits	 Complied, following measured has been taken to control dust pollution from coal storage and handling area; Water Sprinkler System is provided at coal unloading points i.e. at Truck Tripler and Wagon Tripler Water Sprinkler System has been provided at coal storage area Coal is transferred through covered conveyer system. Coal Storage is under shed. Dust Suppression system is provided at al transfer point of coal conveyer. Dust extraction system with bag filter is provided in coal crusher house Thick plantation has been done around the coal storage area
6	Closed circuit cooling with induced draft	results are well within the norms. Closed circuit cooling tower with
7	cooling tower shall be providedThe liquid effluents will be suitably treated to conform to the prescribed standards before being discharged into nallah. Efforts should be made to utilize the treated effluent to the maximum extent possible so as to conserve water.	induced draft has been provided. Industry has a full-fledged common effluent treatment plant equipped with primary and secondary treatment facility based on activated sludge process. The treated waste water sent to ZLD plant for further treatment and

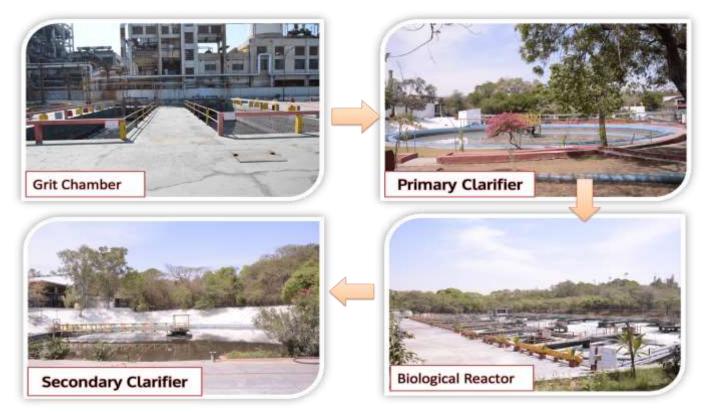
Page **3** of 6

Sr.	Conditions and Environmental Safeguards	Compliance Status
		RO water utilized in manufacturing process. No treated effluent is being discharged. Images of common effluent treatment plant and ZLD plant is enclosed as Exhibit -2
8	An effective and workable plan of ash utilization starting with at least 20% utilization during the first year which may gradually increase by 10% every year so as to achieve 100% utilization by the end of the ninth year may be prepared and submitted. While disposing of the ash through sale to outside parties, it needs to be ensured that the ash is used in an environmentally compatible manner and does not pose any environmental hazard	Industry has installed fly ash collection system and achieved 100% utilization of fly ash in Cement & Brick Manufacturing Industry. Industry has been regularly submitting the Annual Implementation fly ash Report for compliance of the provisions of Fly Ash Notification. Last Annual Fly Ash Report is submitted vide our letter No. 1870/Env-SFD/PCB/Fly Ash on 13.04.2023.
9	Workers in the high noise area will be provided with ear protection devices.	Appropriate personal protective equipment's (PPEs) has been provided to employees based noise level at workplace and required noise insertion loss. Noise monitoring has been done regularly to identification of high noise area & adopt appropriate control measure.
10	Green belt of adequate width with suitably selected species should be raised all around the power plant as also around the ash dump area and coal handling area.	Green belt has been developed in industrial complex. Selected species for has been raised in power plant area and coal storage area. Images of green belt provided in power plant area is enclosed as Exhibit -3 .
11	Regular monitoring of the air quality around the power plant may be carried out and records maintained. Periodic report of air quality may be submitted to this Ministry. Data on S02 emission should be rechecked and furnished to the ministry within three months.	Regular monitoring of the ambient air quality around the industrial campus (SFD, EFD & CPP) is being carried out on regular basis and record are being maintained. Industry has installed 03 (Three) Nos of Continuous Ambient Air Quality Monitoring system (CAAQMS) for Grasim (SFD, EFD & CPP) in consultation with M.P. Pollution Control Board for continuous monitoring of ambient air quality and monitoring results are being displayed on 6 feet X 12 feet LED display board at factory gate for public. Image of the LED display board is enclosed as Exhibit -4 . Four ambient air quality monitoring station in all four directions of Grasim

Sr.	Conditions and Environmental Safeguards	Compliance Status
		complex (SFD, EFD & CPP) has been setup in consultation with CPCB & MPPCB. Regular monitoring of ambient air quality is being carried out and report is being submitted to MPPCB and CPCB and Regional Office of MoEF&CC. Monitoring results are well within the prescribed standards. Report of the reporting period is enclosed as Exhibit -5.
12	Status report on the compliance of pollution standards in respect of existing units may be furnished to this ministry within three months.	Emission and Discharge monitoring from existing units is being carried out and results are in compliance with regulation. Summary of emission monitoring report for reporting period is enclosed as Exhibit -1 No treated effluent is being discharged. Images of common effluent treatment plant and ZLD plant is enclosed as Exhibit -2
13	Separate funds should be allocated for implementation of Environment protection measures along with item wise breakup. These cost should be included as part pf the project cost. The funds earmarked for environmental protection measures should not be diverted for other purposes.	 separate fund was allocated for environmental protection in the project cost and item wise breakup is as follows; Electrostatic Precipitator 2 Nos - Rs. 238 Lacs Fly Ash handling system – Rs 45.38 Lacs. Stack 76-Meter Height – Rs.63.13 Lacs Dust Suppression System – Rs. 9.67 Lacs Water Recycling System – Rs. 4.27 Lacs Industry has installed Continuous Emission Monitoring System (CEMS) at Stacks - Rs. 26.43 Lacs.
14	The stipulated conditions will be monitored by our Regional Office, Located in Bhopal.	Acknowledged
15	A half yearly report on the status implementation of the stipulated conditions and environmental safeguards shall be submitted to this Ministry.	A half yearly compliance monitoring report is being submitted to MoEF&CC regularly. Industry has submitted last six monthly compliance report vide letter No. 1884/Env-

Page **5** of 6

Sr.	Conditions and Environmental Safeguards	Compliance Status
		SFD/MoEF/RO/BPL/EC-40MW dated 25.05.2023 for the period from October 2022 to March 2023.
16	The conditions stipulated may be varied or new ones added of the clearance revoked if necessary on the interest of environment protection	Acknowledged
17	The stipulations will be implemented among others under the Water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 and the amendments made therein from time to time.	Acknowledged, compliance of all applicable regulatory requirement is being ensured.


Exhibit - 1

Month	Cross Sectional	Stack	Velocity	Flow	Emission	Emission	SO2	NOX
	Area of Stack	Temp.			Conc.			
	m ²	°C	m/s	Nm³/s	mg/Nm ³	kg/day	mg/Nm3	mg/Nm3
Apr-23	15.3	121	6.44	70.83	85	520	392	20.16
May-23	15.3	124	6.32	68.99	82	489	410	21.68
Jun-23	15.3	126	6.12	65.63	84	476	424	20.96
Jul-23	15.3	122	6.24	67.57	83	485	408	21.12
Aug-23	15.3	119	6.48	70.79	82	502	394	20.48
Sep-23	15.3	123	6.36	68.66	81	480	378	19.96

SUMMARY EMISSION MONITORING REPORT

Exhibit-2

Effluent Treatment Plant

Zero Liquid Discharge plant.

Exhibit - 3

GLIMPS OF GREEN BELT DEVELOPED

POWER HOUSE GATE

PLANT OVERVIEW

THERMAL POWER PLANT AREA

GREEN BELT

Exhibit-4

LED Display Board for CAAQMS (at Factory Gate for General Public)

Doc.: FENC - 04

((

C

FORMAT - II A

Ambient air quality data at Nagda for the month of : April-2023 All results expressed as Microgram/M3

		SOUTH			NORTH		WEST		EAST	ction	Dire-	
28.04.2023	19.04.2023	09.04.2023	28.04.2023	19.04.2023	09.04.2023	18.04.2023	08.04.2023	18.04.2023	08.04.2023	Date	Hrs.	
 18	17	19	10	12	15	15	15	18	17	SO2		
14	15	19	1	13	1	16	14	20	15	NO2	б -	
16	19	17	10	13	14	14	12	17	14 14	CS2	10	
 12	17	20	10	12	14	12	13	19	17	H2S		
 18	19	18	12	14	10	16	14	15	16	SO2		
12	17	17	13	12	10	10	12	17	17	NO2	10 -	
 17	20	15	13	10	10	14	3	15	16			
 14	20	21	9	12	12	12	4 4	16	19	CS2 H2S SO2		
18	20	20	12	-1	12	4 4	17	15	14	SO2		
14	14	15	10	15	1	14	15	15	16	NO2	- '	
15	18	18	12	14	15	12	10	1 6	18	CS2 F		,
13	19	19	12	10	14	13	1	100	14	H2S SUZ NUZ		
 17	19	19	10	12 1	12 1	10 1	12 1	18 1	19 1	OZ NC		1
 15	16	18	12	10	14	15	1	17 1	19 1	75.0.22	10- 22	2
14	17	17	11	1	11	13	15	19	17			
1	17	15	10	13	13	10	14	17	17	0.21	-	
19	18 8	18	11	12	14	16	6	19	19	200		
16	17	19	10	12	14	13	10	20	15	NUZ UJZ	0 00	22 - 02
17	16	19	14	13	13	12	12	16	20			3
15	16	16	12	10	12	13	12	19	18		E SO	
16	20	20	11	1	15	4	17	21	- <u>1</u> 8		sos	
17	19	20	12	12	ά	12	4	-19	20			02 -
18	18	17	Q	13	4	41	16	17	15	001	CS2 H2S	06
16	20	17	12	12	14	12	13	17	15	_	SCF	_
19	20	20	12	14	15	16	17	21	19		SO2	
17	19	20	13	15	14	16	15	20	20			4115
18	20	19	14	1 4	15	4	16	19	20		-	NIGA.
16	20	21	12	13	14 4	13	14	19	19		H2S	
17.7	18.8	19.0	11.0	12.0	13.0	14.2	15.2	17.7	17.2		SO2	
14.7	16.3	18.0	11.3	12.3	12.2	13.3	12.7	18.0	17.0		NO2	
16.2	18.0	17.2	11.5	12.3	12.8	13.2	12.7	16.7	16.7		CS2	Ľ
13.5	18.2	18.0	10.8	11.5	13.2	12.0	12.8	17.7	16.7		H2S	
45	46	46	4	4	40	39	4_1	46	46		6-14	1
46	45	45	40	40	39	40	40	45	45		14-22	
45	47	47	40	42	40	41	42	47	47		14-22 22-06	
27	26	26	23	21	22	20	23	27	25		6-14	
26	25	24	22	20	ZT	2 10	22	26	26		14-22	
27	25	25	23	21	22	22	23	26	26		22-06	

FORMAT - II B

Ambient air quality data at Nagda for the month of: April-2023

	Dairy	NORTH Labour-Club	WEST Vishnu Bhawan	EAST Fabrication Shop		Sampling location	
	Apr. 2023	Apr. 2023	Apr. 2023	Apr. 2023	& Year	Month	
	18			12	5	SC	
	18.5	18 12.0	12 14.7 2.0	12 17.4 2.0 21	A.M. S.D. Peak	SU2 microgram/ivis	
	1.1	1.5	2.0	2.0	S.D.	ogram/	
	20	15	17	21	Peak	VIS	5
	18	18	12	12	7		-
	16.3	11.9	13.0	12 17.5	A.M.	NU2 IIICIUgi aliirivio	
	2.1 20	1.5	1.9	1.9	S.D. Peak	Juliani,	in the second
-	20	15	16	20	Teak		21
	18	18	12	12	=		-
	18 17.1 1.5	18 12.2 1.7	12 12.9	16.7	A.W.	~ ~ ~	CS2 micronram/M3
	1.5	1.7	1.7	1.6	0.0.	09.9.	rooran
	20	15	16	20	A.M. O.D. Fear	Dook	M3
CIN	18	18	12	12	-	,	-
ND = Not Detected		11.8	12 12.4 1.1	17.2		AM	H2S microgram/M3
aterte	16.6 2.8	1.5	11	1.5	0	20	crogran
а.	21	14	14	19	1	AM SD Peak	n/M3
	g	Q	თ	თ		-	
	46	40	41	46		A.M.	PM1
	0.8	0.8	1.0	0.8		S.D.) microgr
	47	42	42	47	-	Peak	am/M3
	46	40	40	46		G.M.	
	9	9	თ	თ		5	
	26	22	22	26		A.M.	τ
	0,9	0.9	1.1	0.6		S.D.	VIZ.5 MICrogra
	27	23	23	27		reak	CIVILIE
	26	22	22	26		G.N.	

A =Arithmetic mean, S.D.=Ltandard Deviation, G.M. Geometric mean, i=number of observation, A Norms for SO2, NO2 & SPM as per NAAQM Standard and Premissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

(

0)

Doc.:FENC - 04

FORMAT - II A

Ambient air quality data at Nagda for the month of : May-2023 All results expressed as Microgram/M3

	SOUTH		NORTH		WEST		EAST	ction	Dire-
25.05.2023	SOUTH 09.05.2023	25.05.2023	4 09.05.2023	24.05.2023	08.05.2023	24.05.2023	08.05.2023	Date	Hrs.
19	20	1 4	14	1 0	10	22	20	SO2	
18	19	12	4	1 5	14	19	17	NO2	б
17	18	12	13	14	10	18	16	CS2	6 - 10
20	18	13	9	10	12	20	19	H2S	
18	18	1	12	15	11	18	18	SO2	
14	18	15	10	1 4	15	20	15	NO2	10 -
20	17	1 1	- <u>+</u> -	13	1 1	19	19	CS2 H2S	14
18	17	12	12	13	7	17	14		
17	15	16	11	13	13	20	20	SO2 N	
20	16	13	12	12	13	14	20	NO2 C	14 - 18
19	20	12	12	4	12 1	17 1	14	CS2 H	8
22 20	16 17	14 13	10 14	11 14	10 12	19 18	15 21	H2S SO2	H
18	7 18	3 12	4 13	15	2 14	8 17	15)2 NO2	18 -
21	16	10	9	15	13	20	18	2 CS2	- 22
19	17	13	11	14	14	17	16	H2S	
17	19	12	12	16	4	17	19	SO2	
21	15	13	10	1	12	19	17	NO2	22
22	19	13	10	13	1	17	26	2 CS2	22 - 02
22	18	11	12	13	13	19	16	H2S	
19	15	15	13	15	9	16	16	SO2	
17	18	1 4	10	15	14 14	21	16	NO2	02 - 0
19	15	12	<u>د</u> د	1 4	10	19	17	CS2 H	6
20	16	13	10	12	12	100	18	H2S S	
20	20	16	4	16	4	22	21	SO2 1	-
21	1 <u>0</u>	15	13	15	15	21	20	NO2 0	4Hrs N
22	20	ώ	ώ	1 5	1ω	20	26	CS2	
22	100	4 4	12	14 4	14 4	20	19	H2S	+
18.3	17.3	13.5	12.7	14.8	11.5	18.5	19.0	SO2	
18.0	17.3	13.2	11.0	13.7	13.7	18.3	16.7	NO2	24Hn
19.7	17.5	11.7	11.0	13.8	11.2	18.3	18.3	CS2	24Hrs Avg
20.2	17.0	12.7	10.7	12.2	12.0	18.3	16.3	H2S	
46	45	42	40	40	42	48	44	6-14	00 T
47	47	41	38	42	40	46	46	14-22	-
47	48	40	41	41	41	48	45	22-06	PM10
28	28	20	19	19	22	27	27	6-14	
26	26	_ <u>_</u>	20	20	20	28	25	14-22	S.Avg.
27	27	20	21	21	21	26	26	22-06	Ήτ

BDL: Below detectable Limit Tr.: Tracess ND: Not Detectedble

FORMAT - II B

Ambient air quality data at Nagda for the month of : May-2023

NO2		microgram/M3	IM3		
э	A.M.	S.D.	Peak		-
12	17.5	2.2	21		
N	13.7	1. 	5		-
N	12.1	1.6	15		
2	17.7	-1.9	21		
er	er of observation.	Nation		Г	

12	12	12	12	5	0
18.6	11.8	12.5	18.3	A.M.	S2 mic
2.0	-	1.6	2.8	S.D.	icrogram
22	13	15	26	Pea	IM3

12	12	12	12	э _т
18.6	11.7	12.1	17.3	H2S microgra
2.0	1.4	1.3	1.7	gram/ S.D.
22	14	14	20	M3 Peak

თ	D	თ	თ	-	
47	40	41	46	A.M.	PM10
0.9	1.2	0.8	-1 .5	S.D.	M10 micro
48	42	42	48	Peak	pram/M
47	40	41	46	G.M.	ω

				-
Ø	თ	თ	თ	3
27	20	21	27	PM2.5 microc
0.8	0.7	1.0	1.0	microgr S.D.
28	21	22	28	Peak
27	20	20	26	G.M.

Note: Norms for SO2, NO2, PM10 & PM2.5 as per National Ambient Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

C	J
¢	2
¢	7
•	
1	Π
Г	П
h	-
2	5
¢	
	5
2	2

FORMAT - II A

Ambient air quality data at Nagda for the month of : June 2023

All results expressed as µg/m³

		SOUTH		NORTH			WEST			EAST	ction	Dire-
ND: Not Detectedble	17.02.2023	SOUTH 08.06.2023	17.02.2023	NORTH 08.06.2023	27.06.2023	20.06.2023	06.06.2023	27.06.2023	20.06.2023	06.06.2023	Date	Hrs.
tected	16	19	12	15	12	16	12	17	18	17	SO2	
ble	17	17	12	12	11	18	15	15	15	12	NO ₂	6 -
	15	17	16	14	12	17	14	13	16	17	NO ₂ CS ₂	10
	13	19	11	10	1	10	13	21	19	15	H ₂ S	
Tr.:	18	18	10	10	11	18	1	15	15	14	SO2	
Tracess	15	19	13	13	13	15	16	18	17	16	NO ₂	10-
ess	16	22	11	13	11	16	12	17	18	16	CS ₂	10 - 14
	17	20	10	10	12	11	1	17	17	17	H ₂ S	
	15	15	1	11	13	17	15	19	16	19	SO2	
	18	20	12	11	14	16	17	16	10	17	NO2	14 -
	17	17	14	12	10	14	14	15	17	20	2 CS2	- 18
	-	7 15	4 10	2 14	11	10	10	19	20	18	H ₂ S	
	18 13	5 15	0 11	4 12	1 10	0 19	0 16	9 20	0 19	8 16	S SO ₂	\vdash
		5 16	1 12	2 14	0 12	9 14	6 16	0 18	9 14	5 19	D ₂ NO ₂	1
	19											18 - 22
	14	19	13	11	12	18	13	16	20	18	CS ₂ H	
	16	19	12	9	10	12	12	17	18	19	H ₂ S	
	20	17	12	11	13	20	18	19	17	14	SO ₂	
	18	18	13	10	10	17	13	17	19	18	NO2	22 - 02
	16	21	10	10	13	15	13	18	19	17	CS ₂	22
	15	18	13	11	13	10	10	16	17	20	H ₂ S	
	16	20	15	13	12	21	14	18	18	18	SO2	
	16	17	12	12	11	19	16	14	18	20	NO ₂	02 - 06
	16	18	12	12	12	19	14	20	17	21	NO ₂ CS ₂ H ₂ S	6
	14	21	1	12	12	12	12	18	19	19	H ₂ S	
	20	20	15	15	13	21	18	20	19	19	SO ₂	
	19	20	13	14	14	19	17	18	19	20	NO ₂	4Hrs
	17	22	16	14	13	19	14	20	20	21	CS ₂	Max.
	18	21	13	14	13	12	13	21	20	20	H ₂ S	
	16.3	17.3	11.8	12.0	11.8	18.5	14.3	18.0	17.2	16.3	SO2	Т
	17.2	17.8	12.3	12.0	11.8	16.5	15.5	16.3	15.5	17.0	NO ₂	24Hrs Avg
	15.7	19.0	12.7	12.0	11.7	16.5	13.3	16.5	17.8	18.2	CS ₂	BAN S
	15.5	18.7	11.2	11.0	11.5	10.8	11.3	18.0	18.3	18.0	H ₂ S	
	48	46	39	41	38	41	39	48	47	46	6-14	+
	48	46	41	40	37	42	40	46	48	47	14-22	8 HIS.AVG. PWID
	47	45	42	38	39	40	41	45	46	45	22-06	- PIVITO
	28	27	24	21	20	21	21	28	27	26	6 6-14	
	29	28	22	22	21	21	22	26	26	27	14-22	
	27	27	23	21	22	22	20	27	28	26	2 22-06	FIVIZ.3

EAST WEST Vishnu Bhawan NORTH Labour-Club

Jun. 2023

Jun. 2023 Jun. 2023 Sampling location

Month & Year Jun. 2023

Ambient air quality data at Nagda for the month of : June 2023

FORMAT - II B

_	_		ω.	w	ω
	3	18	18	12	12
SO2	A.M.	18 17.2	18 14.9	12 11.9	16.8
SO ₂ µg/m	A.M. S.D.	1.8	3.3 3	1.6	12 16.8 2.1
-ω	Peak	20	21	15	20
	J	18	18	12	12
NO ₂	A.M.	16.3	18 14.6	12 12.2	17.5
NO ₂ µg/m ³	S.D. Peak	2.5 20	2.5	1.0 14	12 17.5 1.4
ω	Peak	20	19	14	20
	_				
	2	18	18	12	12
CS_2	A.M.	17.5	13.8	12.3	17.3
CS ₂ µg/m	S.D.	17.5 2.0 21	13.8 2.3	12 12.3 1.7	12 17.3 2.2 22
ω	Peak	21	19	16	22
-	~1				
	-	18	18	12	12
H ₂ S ₁	A.M.	18.1	18 11.2 1.0	12 11.1 1.4	12 17.1 2.4
m/bH		1	1.0	1.2	2.4
13	S.D. Peak	18.1 1.5 21	13	14	4 21
-	*				
	n	9	9	თ	თ
PM10	A.M.	46		40	
micro	S.D	1.1	40 1.5	40 1.3	47 1.1
	Pe	48	42	42	48
gram/N	Ŗ				
PM10 microgram/M3	. Peak G.M	46	40	40	47
gram/M3	ak G.M		40		47
gram/M3	ak G.M n		40 9		47 6
gram/M3 PM2.5 t	ak G.M n A.M.	46	40	40	47
gram/M3 PM2.5 microgi	ak G.M n A.M. S.D.	46	40	40 6	47 6
gram/M3 PM2.5 microgram/M3	ak G.M n A.M. S.D. Peak	46	40	40 6	47 6

C

(

FORMAT - II A

Ambient air quality data at Nagda for the month of : July-2023 All results expressed as Microgram/M3

BDL :		SOUTH		NORTH		WEST		EAST	ction	Dire-
Below detectable Limit	22.07.2023	SOUTH 06.07.2023	22.07.2023	NORTH 06.07.2023	20.07.2023	04.07.2023	20.07.2023	04.07.2023	Date	Hrs.
able Lin	18	18	9	14	10	10	18	21	SO2	t
nit	21	20	11	1	12	13	13	20	NO2	6
	17	21	11	14	13	10	15	14	CS2	6 - 10
Tr	19	17	10	10	10	13	18	18	H2S	
Tr.: Tracess	22	17	13	12	14	12	17	22	SO2	
ŝ	19	18	10	13	10	12	19	19	-	10
	19	17	12	10	12	9	15	12	NO2 CS2 H2S SO2	10 - 14
ND: N	21	20	1			10	16	19	H2S	
Vot De	18	15	11	1	15	14	16	20	SO2	
ND: Not Detectedble	17	17	12	12	13	1 4	16	18	NO2	14 -
ble	20	19	13	1	14	12	1 4	15	NO2 CS2 H2S SO2 NO2	18
	20	15	12	12	13	11	15	15	H2S	
	19	19	12	13	12	13	15	21	SO2	
	22	15	1	11	1	13	17	17	NO2	18 - 22
	19	16	1	13	1	10	16	17	CS2	22
	22	18	10	13	12	12	19	18	H2S	
	20	17	1	12	7	1	14 4	19	S02	
	18	16	14	10	13	10	16	18	NO2 CS2	22 - 02
	20	18	14	12	13	13	12	15	CS2	02
	17	14	13	1	10	13	14 4	16	H2S	
	21	15	12	13	15	12	15	17	SO2 NO2	
	16	18	13	12	12	12	15	16	NO2	02 -
	16	15	12	11	10	10	13	13	CS2	90
	18	19	12	12	4	10	12	17	H2S	
	22	19	13	14	15 5	14	18	22	SO2	
	22	20	14	13	13	14	19	20	NO2	4Hrs
	20	21	1 4	14	14	13	16	17	CS2	Max.
	22	20	13	13	13	13	19	19	H2S	
	19.7	16.8	11.3	12.5	12.8	12.0	15.8	20.0	SO2	
	18.8	17.3	11.8	11.5	11.8	12.3	16.0	18.0	NO2	24Hr
	18.5	17.7	12.2	11.8	12.2	10.7	14.2	14.3	CS2	24Hrs Avg
	19.5	17.2	11.3	11.5	11.2	11.5	15.7	17.2	H2S	
	48	46	39	40	4	4	45	47	6-14	8
	48	47	40	42	40	43	46	48	14-22	Hrs.Avg."
	47	45	4	41	42	42	46	46	22-06	PM10
	28	26	21	21	21	21	27	28	6-14	8 Hr.
	25	27	20	19	22	23	25	26	14-22	8 Hrs.Avg.' PM2.5
	27	25	22	20	20	22	26	27	22-06	PM2.5

FORMAT - II B

Ambient air quality data at Nagda for the month of : July-2023

Sampling location	Month	S	SO2 microgram/M3	ogram/	M3
	& Year	5	A.M. S.D.	S.D.	Peak
EAST	July-2023	12	17.9	2.6	22
Fabrication Shop					
WEST	July-2023	12	12.4	1.7	5
Vishnu Bhawan					
NORTH	July-2023	12	11.9	1.3	44
Labour-Club					
SOUTH	July-2023	12	18.3	2.0	22
Dairy					

Z	02 micr	ogram	/M3
7	A.M.	S.D.	Peak
12	17.0	1.9	20
12	12.1	1.2	14
12	11.7	1.2	14
12	18.1	2.0	22

	_	0	S2 micr	licrogram	M3
*	-	J	A.M.	S.D.	Peak
0		12	14.3	1.5	
+-		12	11.4	1.6	
		12	12.6	-	14
10		12	18.1	1.8	21
L	-				

12	12	12	12	3	-
18.3	11.4	11.3	16.4	A.M.	12S microg
2.2	1.0	1.2	2.1	S.D.	ogram/N
22	13	13	19	Peak	M3

Ø	თ	თ	თ	5	
47	4	42	46	A.M.	PM10
·	1.0	1.0	0.9	S.D.	o micro
48	42	43	48	Peak	gram/M
47	40	41	46	G.M.	/3
					_

	0	6	თ	თ	5
	26	21	22	27	PM2.5 m
	 	1.0	1.0	1.0	S.D
	28	22	23	28). Peak
	26	20	21	26	G.M.
-					

Doc.: FENC - 04

(1

)

¢

1	Ţ	1
(2)
,	τ	J
1	<	2
1	b	2
-	_	1
	,	
	-	-
,	_	
•	Þ	~

Ambient air quality data at Nagda for the month of : August-2023

01 10	
3 - 22 - 02	All results expressed as Microgram
02 - 06	/M3

Dire	ction	EAST		WEST		NORTH			SOUTH		
Hrs	Date	03 08 2023	14.08.2023	03.08.2023	14.08.2023	05.08.2023	16.08.2023	27.08.2023	05.08.2023	16.08.2023	27.08.2023
	SO2	25	<u>~</u>	4	5	12		6	17	<u>'</u>	с Ф
6-	NO2	22	20	с, С	ц,		3	3	22	8	сл Сл
5	CS2	à	17	1	4	ò	12	6	<u></u>	17	17
	H2S	0	0	ដ	à	12	N	ò	20	20	ώ.
	SO2	20	ភ	ີ ເກ	съ Сл	ΰ.	0	1N	è	~	~
10-	NO2	 00	17	13	4	ώ.		13	20	с, б	6
14	CS2	- <u>1</u> 0	ά	4	ά.	ω	ώ	<u>.</u>	2.	20	ີ່ດ
	H2S	20	1 0		ώ			ω	-^ W	_ `	17
	SO2	ŝ	Ú	2	ີ່ພ	0	4	12	20	17	cn.
1	NO2 0	20	сл Сл		12	12	12	0	19	20	3
ā	CS2 ·	ŵ	ີ່ດ	ώ	4	4	ò	2	22	<u>0</u>	сл
	H2S SO2 NO2	<u>co</u>	<u>~</u>	4	1	ò	4	12	ò	22	00
	02 N	21 21	00	3	4	4		6	~` 00	0	4
	D2 CS2		17 1	4	5	=	6	N	2	à	20
1		20	9	ហ	5 U	2	4	 	20	21	4
+	H2S S	.7	.7	N	4	ώ	ω	0	21	ŵ	້ອ
	SOS 1	00	9		ີ່ດ	 	N		22	00	ŵ
	NO2 C	20	20	Ň	1	ò	ώ	ò	23	22	8
	CSZ	. 00	ð	ò	ώ	ώ.	4	4	ů,	22	ດັ
+	12S	19	ê	Q	ώ	Q	ò	12	20	22	CT
200	SON	22	21	3	ີ. ຫ	ώ	13	4	N	20	້ໍ່ດ້
	NOZ	ů,		ŵ	ц,	N	0	N	20	17	6
200	C2L 7C0	17	17	12	4	ò	12	w	17	<u>ن</u>	с, С
20	071	 C0	17	5	Ň	1	\vec{o}	12	21	20	4
222	2002	25	21	ជា	16	4	4	12	22	20	ů.
200		22	20	5	 س	- <u>1</u> 3	ω̈́.	ώ	23	22	20
200	200	20	10	сл Сл	сл	3	4	4	22	22	17
E SO		20	<u>0</u>	4	4	ີພ	4	12	21	22	0 0
000	002	20.8	17.7	12.5	4.00	12.2	 00	11.0	19.5	18.5	16.3
000 ND0	NOE	20.0	18.0	13.8	13.7	Сл Сл	- CT		20.8	5. 0. 5	17.2
020	COL	18.0	16.7	12.5	13.8	10.8	12.0	ц 1 Сл	19 J	197	15.7
SCT		18.5	17.7	11.5	12.2	11.0	11.7	10.8	19.8	20.2	5.5 5
p-14		45	46	40	40	39	ယ () ()	4	46	46	46
14-22		47	45	42	42	4	37	40	45	4 10	48
22-06		46	47	4	39	40	36	39	47	47	47
6-14		25	27	21	à	i O	21	23	25	28	27
6-14 14-22 22		27	26	20	20	22	23	22	26	25	26
2 22-06		24	26	22	2	21	20	21	27	27	

FORMAT - II B

Ambient air quality data at Nagda for the month of: August-2023

Sampling location Month SO2 mic	SO2 microgram/M3	NO2 microgram/M3	CS2 microgram/M3	H2S microgram	< <	0	D AN	SD Pea
& Year n A.M	S.D. Peak	n A.M. S.D. Peak	n A.M. S.D. Peak	A.V. S.J. Feak	A. WI.	J.J. TEAN G.V.	+	0.0
EAST Fabrication Shop Aug 2023 12 19.3	19.3 2.7 25	12 19.0 1.9 22	12 17.3 1.4 20	12 18.1 1.1 20	6 46	0.8 47 46	6 26	1.1 27
Vishnu Bhawan Aug. 2023 12 13.7	1 8 16	12 13.8 1.5 16	12 13.2 1.5 15	12 11.8 1.6 14	6 41	1.1 42 41	6 21	1.0 22
NORTH Aug. 2023 18 11.7	11.7 1.3 14	18 11.4 1.1 13	18 11.4 1.5 14	18 11.2 1.4 14	9 39	1.6 41 39	9 21	1.2 23
Dainy Aug. 2023 18 18.1	18.1 2.0 22	18 18.8 2.3 23	18 18.3 2.4 22	18 18.5 2.6 22	9 46	0.9 48 46	9 27	1.1 28

C

Dec.: FENC - 04

(()

0
0
TI
Ш
Z
0
1
0

FORMAT - II A

C

¢

Ambient air quality data at Nagda for the month of : September-2023 All results expressed as Microgram/M3

	SOUTH		NORTH		WEST		EAST	ction	Dire-
18.09.2023	H 05.09.2023	18.09.2023	NORTH 05.09.2023	17.09.2023	04.09.2023	17.09.2023	04.09.2023		Hrs.
17	19	10	12	12	10	19	17	SO2	
15	18	14	12	17	15	12	16	NO2	б -
18	17	10	14	11	14	17	17	CS2	- 10
18	7 20	12	12	11	9	19	19	2 H2S	
19	20	11	11	10	11	16	15	S SO2	
16	16	10	10	14	16	18	16	-	10
14	18	9	10	12	12	14	14	NO2 CS2 H2S	10 - 14
17	18	10	11	10	1	15	18	2 H2S	
20	21	14	12	14	13	18	20	SO2	
14	17	12	10	13	12	13	17	NO2	14 -
15	15	1 4	1 4	14	14	18	20	CS2	18
19	19	 	11	11	10	14	21	H2S	
19	19	12	12	11	1 4	19	16	SO2	
14	18	10	12	12	16	15	15	NO2	18 - 2
20	22	12	12	10	13	17	18	CS2	22
14	20	13	13	12	12	16	19	H2S	
19	18	1 4	14	12	15	14	20	SO2	
16	15	11	1 4	13	13	16	18	NO2	22 - 02
18	18	13	13	13	13	15	19	CS2	02
17	17	12	12	9	10	18	20	H2S	
14	20	12	10	14	14	17	19	SO2	
17	18	15	12	15	16	13	16	NO2	02 -
19	20	14	11	12	14	18	17	CS2	
20	18	12	13	10	12	14 14	21	H2S	
20	21	14 14	14	14	15	19	20	SO2	
17	18	15	14 4	17	16	18	18	NO2	4Hrs
20	22	1 4	14 4	14	14	18	20	CS2	Max.
20	20	13	13	-12	12	19	21	H2S	
18.0	19.5	12.2	11.8	12.2	12.8	17.2	17.8	SO2	
15.3	17.0	12.0	11.7	14.0	14.7	14.5	16.3	NOZ	1
17.3	18.3	12.0	12.3	12.0	13.3	16.5	17.5	CS2	Þ
17.5	18.7	11.7	12.0	10.5	10.7	16.0	19.7	HZS	
46	47	42	43	4	39	46	44	0-14	,
45	46	43	42	40	40	44	46	14-22	
46	46	42	42	41	41	45	45	27-00	
26	25	21	22	20	19	26	28	- - 4	
25	27	20	21	21	21	25	26	14-22	
26	26	21	22	20	20	27	27	00-77	1

BDL: Below detectable Limit Tr.: Tracess ND: Not Detectedble

FORMAT - II B

Ambient air quality data at Nagda for the month of : September-2023

Sampling location	Month	S	SO2 microgram/M3	ogram	IM3	NO2 microgram/M3	rogran	n/M3		CS2 microgram/M3	rogram/	M3		H2S microgram/M3	rogram/I	MIS
	& Year	-	n A.M.	S.D. Peak	Peak	n A.M. S.D. Peak	S.D	Peak	5	n A.M. S.D. Peak	S.D.	Peak	-	A.M.	A.M. S.D. Peak	Peak
													-			
EAST	September-2023	12	12 17.5	1.9 20	20	12 15.4 1.8 18	1.8	18	12	12 17.0	1.8	20	1	12 17.8	2.4 21	21
Fabrication Shop									-						_	
WEST	September-2023	12	12 12.5	1.7	15	12 14.3 1.6 17	1.6	17	12	12 12.7	1.2	14	12	10.6	1.0	12
Vishnu Bhawan)	:				
NORTH	September-2023	12	12 12.0	1.4 14	14	12 11.8 1.7	1.7	15	12	12.8	N	14	12	11.8	0.9	5
Labour-Club												8			1	3
SOUTH	September-2023	12	12 18.8 1.7 21	1.7	21	12 16.2 1.4	1.4	18	1	12 17.8 2.2	2.2	22	712	18.1	1.1	NO
Dairv													Γ	-		

Note: Norms for SO2, NO2, PM10 & PM2.5 as per National Ambient Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

	5	თ	σ	თ	σ
PM10	A.M.	45	40	42	46
PM10 micros	S.D.	0.8	0.7	0.5	0.6
gram/M3	Peak	46	41	43	47
ω	G.M.	45	40	42	46
	D	6	თ	თ	თ
PM2.5 r	A.M	27	20	21	26
	>				

ב ת	A.M. S.). Peak 28	G.N
თ	27	1.0	28	
თ	20	0.7	21	
0	21	0.7	22	
თ	26	0.7	27	

1 of 1