

November 29, 2021

No.1726/Env-SFD/MOEF/RO/BPL/EC-40MW

Director
Ministry of Environment, Forest and Climate Change,
Regional Office (WZ),
E-5, Kendriya Paryavaran Bhawan,
E-5 Arera Colony, Link Road-3,
Ravishankar Nagar,
Bhopal – 462016

Sub: Submission Environment Clearance Compliance Report for the period from April 2021 to September 2021 for Grasim Industries Limited, 40 MW Thermal Power Plant, P.O. Birlagram, Nagda, District Ujjain – 456 331, M.P.

Ref: Environment Clearance Issued vide File No. J-13011/18/94-IA II

Dear Sir,

This has reference to above cited environment clearance & condition prescribed therein and provisions of Section 10 of EIA Notification, dated 2006.

We are enclosing with this letter Six Monthly point wise Environment Clearance Compliance Report along with data sheet and summary of monitoring results for the period from April - 2021 to September - 2021 of Grasim Industries Limited, 40 MW Thermal Power Plant.

We are also sending the compliance report to MoEF&CC Regional Office, Bhopal through e-mail address on rowz.bpl-mef@nic.in.

Hope you will find the information provided in order, we shall be happy to furnish further details / clarifications, if required.

Thanking you, Yours faithfully,

K Suresh

Sr. President & Unit Head

CC:

- 1. Ministry of Environment Forest & Climate Change, New Delhi
- 2. Central Pollution Control Board, Zonal Office, Bhopal
- 3. Madhya Pradesh Pollution Control Board Bhopal

Enclosed: As Above

SIX MONTHLY COMPLIANCE REPORT OF ENVIRONMENT CLEARNACE FOR

GRASIM INDUSTIRES LIMITED, (40MW THERMAL POWER PLANT)

BIRLAGRAM, NAGDA – 456 331

DIST. UJJAIN (M.P.)

Submitted to:

Ministry of Environment Forest & Climate Change, (WR Office) Bhopal

Ministry of Environment Forest & Climate Change, New Delhi

Central Pollution Control Board, Zonal Office, Bhopal

Madhya Pradesh Pollution Control Board - Bhopal

Submitted by:

Grasim Industries Limited, (40MW Thermal Power Plant)

Birlagram, Nagda – 456 331

District: Ujjain (M.P.)

Period: APRIL 2021 – SEPTEMBER 2021

Submitted on: 1 DECEMBER 2021

Contents

Sr. No.	Title	Page No.
1	Introduction	1
2	Compliance Status of Environment Clearance for Grasim Industries Limited, 40MW Thermal Power	2 - 6

List of Annexures

Exhibit -1	Summary of Emission Monitoring results of reporting period
Exhibit -2	Summary of Treated Effluent Monitoring results of reporting period
Exhibit -3	Glimpse of plantation in the complex
Exhibit -4	Image of the display board at Factory Gate showing environmental parameters for general public
Exhibit -5	Ambient air quality monitoring results in Grasim Complex (SED, EFD & CPP) of reporting period

Introduction

- 1. Grasim Industries Limited (GIL), incorporated on 25th Aug., 1947; is a flagship company of the Aditya Birla Group and India's pioneer in manufacturing of Viscose Staple Fibre (VSF) a man-made, biodegradable fibre with characteristics akin to cotton.
- 2. M/s. Grasim Industries Ltd. has four VSF Plants in India which are located at Nagda (Madhya Pradesh), Harihar (Karnataka), Kharach & Vilayat (Gujarat).
- 3. 40 MW Thermal Power Plant is coal based thermal power plant located at Birlagram, Nagda.
- 4. All the operation related permits, including Environmental Clearance from MOEF & CC and Consents to Establish (CTE) & Consent to Operate (CTO) has obtained from M.P. Pollution Control Board, Bhopal are in place.
- 5. Environmental quality monitoring in & around the Plant site is being carried out by M.P. Pollution Control Board, in-house Laboratory & NABL accredited laboratory on a regular basis.
- 6. 03 No. of Continuous Ambient Air Quality Monitoring Stations (CAAQMS) along with other Environmental Parameter from Grasim Complex (SED, EFD & CPP) displayed on LED Board at main gate of the Plant Premises.
- 7. Online Continuous Emission Monitoring System (CEMS) is installed at stack and connected with M.P. Pollution Control Board and CPCB, New Delhi.
- 8. Industry has completed ZLD Project as per stipulation given by MPPCB, CPCB, & MoEFCC, Bhopal on 30.09.2021.
- 9. A vast green belt is developed to curb the emission and also to improve environmental conditions in & around Grasim complex.
- 10. Point wise compliance status of Environmental Clearance for Grasim Industries Limited, 40MW Thermal Power Plant Fibre Division, Birlagram, Nagda is furnished herewith;

Environment Clearance

(Grasim Industries Limited, 40 MW Thermal Power Plant) MOEF Ref. O.M. No: J-13011/18/94-IA. II dated 01.03.1995 Period - APRIL 2021 — SEPTEMBER 2021

Sr.	Conditions and Environmental Safeguards	Compliance Status
	M/s Grasim Industries Limited may refer to proposal dated 26.08.1994 on the subject mentioned above. The Proposal has been examined and accorded clearance from environmental angle subject to effective implementation of the following conditions and environmental safeguards:	Acknowledged
1	All the conditions stipulated by the State Pollution Control Board shall be implemented effectively.	Industry is complying the conditions laid down by state pollution Control Board and has valid consents & authorization issued by M.P. Pollution control board; • Consent under The Water (Prevention and Control of Pollution) Act, 1974 issued vide Letter No. AW-53917 dated 05.08.2021 valid up to 31.07.2022. • Consent under The Air (Prevention and Control of Pollution) Act 1981 issued vide letter no. AW-53917 dated 05.08.2021 valid up to 31.07.2022. • Authorization under the hazardous waste rule issued vide No.AWH-52040 dated 01.09.2020 valid up to 28.05.2025.
2	A stack height of not less than 76 meters shall be provided along with ports for stack monitoring	A stack of 76-meter height constructed and stack monitoring port has been provided for sampling. Online Continuous Monitoring System (CEMS) is also provided at stack and connected to M.P. Pollution Control Board and Central Pollution Control Board, New Delhi.
3	The Electrostatic precipitators having an efficiency of not less than 99.8% shall be installed.	Two High Efficiency Electrostatic Precipitators having three field each has been provided to boilers, which are

Sr.	Conditions and Environmental Safeguards	Compliance Status
		performing efficiently to meet particulate emission norms. Emission monitoring is done and reports are being submitted to Regional Officer, MoEF&CC, Bhopal regularly. The current status of ESP efficiency is 99.81 %
4	The particulate emission shall not exceed the prescribed limit of 350 mg/Nm3 at any time	Two High Efficiency Electrostatic Precipitators have been provided to boilers, which are performing efficiently to meet particulate emission norms. Emission monitoring is done and reports are submitted to Regional Officer, MoEF&CC, Bhopal regularly. Summary of emission monitoring report for reporting period is enclosed as Exhibit -1
5	Dust suppression and dust extraction devices shall be installed in the coal handling area to ensure the level of dust within prescribed limits	 Complied, following measured has been taken to control dust pollution from coal storage and handling area; Water Sprinkler System is provided at coal unloading points i.e. at Truck Tripler and Wagon Tripler Water Sprinkler System has been provided at coal storage area Coal is transferred through covered conveyer system. Dust Suppression system is provided at al transfer point of coal conveyer. Dust extraction system with bag filter is provided in coal crusher house Thick plantation has been done around the coal storage area Dust level is monitored regular basis in coal handling area and monitoring results are well within the norms.
6	Closed circuit cooling with induced draft cooling tower shall be provided	Closed circuit cooling tower with induced draft has been provided.
7	The liquid effluents will be suitably treated to conform to the prescribed standards before being discharged into nallah. Efforts should be made to utilize the treated effluent to the maximum extent possible so as to conserve water.	Liquid effluent treated in common effluent treatment plant before and it is ensured that discharge effluent conform to the prescribe standards before discharging to nallah. Summary of treated effluent monitoring report for

Sr.	Conditions and Environmental Safeguards	Compliance Status
		reporting period is enclosed as Exhibit -2 Treated waste water is utilized for sprinkler system for coal storage & coal handling area and fly ash quenching-
		Industry has also installed Continuous Effluent Quality Monitoring System (CEQMS) for treated effluent and same is connected to Environmental Surveillance Centre of M.P. Pollution Control Board, Bhopal and Central Pollution Control Board, New Delhi.
		Industry is regularly conducting the analysis by NABL accredited laboratory for the treated effluent from SFD as all the effluents are treated in common ETP of SFD. All test results are well within the stipulated norms.
8	An effective and workable plan of ash utilization starting with at least 20% utilization during the first year which may gradually increase by 10% every year so as to achieve 100% utilization by the end of the ninth year may be prepared and submitted. While disposing of the ash through sale to outside parties, it needs to be ensured that the ash is used in an environmentally compatible manner and does not pose any environmental hazard	Industry has installed fly ash collection system and achieved 100% utilization of fly ash in Cement & Brick Manufacturing Industry. Industry has been regularly summiting the Annual Implementation Report for compliance of the provisions of Fly Ash Notification. Last Annual Implementation Report is submitted vide our letter No. 1659/Env-SFD/MoEF/Fly Ash Comp Rep on 24.04.2021.
9	Workers in the high noise area will be provided with ear protection devices.	Appropriate personal protective equipment's (PPEs) has been provided to employees based noise level at workplace and required noise insertion loss. Noise monitoring has been done regularly to identification of high noise area & adopt appropriate control measure.
10	Green belt of adequate width with suitably selected species should be raised all around the power plant as also around the ash dump area and coal handling area.	Green belt has been developed in industrial complex. Selected species for has been raised in power plant area and coal storage area. Images of green belt provided in power plant area is enclosed as Exhibit -3 .
11	Regular monitoring of the air quality around the power plant may be carried out and records maintained. Periodic report of air	Regular monitoring of the ambient air quality around the industrial campus (SFD, EFD & CPP) is being carried out

Sr.	Conditions Safeguards	and	Environmental	Compliance Status
	quality may be sub on S02 emission furnished to the mi	should be	rechecked and	on regular basis and record are being maintained. Industry has installed 03 (Three) Nos of Continuous Ambient Air Quality Monitoring system (CAAQMS) for Grasim (SFD, EFD & CPP) in consultation with M.P. Pollution Control Board for continuous monitoring of ambient air quality and monitoring results are being displayed on 6 feet X 12 feet LED display board at factory gate for public. Image of the LED display board is enclosed as Exhibit -4 . Four ambient air quality monitoring station in all four directions of Grasim complex (SFD, EFD & CPP) has been setup in consultation with CPCB & MPPCB. Regular monitoring of ambient air quality is being carried out and report is being submitted to MPPCB and CPCB and Regional Office of MoEF&CC. Monitoring results are well within the prescribed standards. Report of the reporting period is enclosed as Exhibit -5 .
12	Status report on the standards in resperiments furnished to this m	ect of exist	ing units may be	Emission and Discharge monitoring from existing units is being carried out and results are in compliance with regulation. Monitoring results is regularly reported to Regional Office, MoEF&CC, Bhopal on quarterly basis. Last report submitted for the period from Jul-2021 to Sep-2021 vide our letter No. 1712/Env-SFD/MoEF/BPL/Report dated 09.10.2021.
13	Separate funds implementation or measures along These cost should project cost. The environmental pronot be diverted for	f Environ with item be includ e funds otection m	ment protection wise breakup. ed as part pf the earmarked for leasures should	separate fund was allocated for environmental protection in the project cost and item wise breakup is as follows; • Electrostatic Precipitator 2 Nos-Rs. 238 Lacs • Fly Ash handling system – Rs 45.38 Lacs. • Stack 76-Meter Height – Rs.63.13 Lacs • Dust Suppression System – Rs. 9.67 Lacs

Sr.	Conditions and Environmental Safeguards	Compliance Status
		 Water Recycling System – Rs. 4.27 Lacs Industry has installed Continuous Emission Monitoring System (CEMS) at Stacks - Rs. 26.43 Lacs.
14	The stipulated conditions will be monitored by our Regional Office, Located in Bhopal.	Acknowledged
15	A half yearly report on the status implementation of the stipulated conditions and environmental safeguards shall be submitted to this Ministry.	A half yearly compliance monitoring report of is being submitted to MoEF&CC regularly. Industry has submitted last six monthly compliance report vide letter No. 1669/Env-SFD/MoEF/RO/BPL/EC-40MW dated 29.05.2021 for the period from October 2020 to March 2021.
16	The conditions stipulated may be varied or new ones added of the clearance revoked if necessary on the interest of environment protection	Acknowledged
17	The stipulations will be implemented among others under the Water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 and the amendments made therein from time to time.	Acknowledged, compliance of all applicable regulatory requirement is being ensured.

Exhibit - 1

SUMMARY EMISSION MONITORING REPORT

Month	Cross Sectional	Stack	Velocity	Flow	Emission	Emission	SO2	NOX
	Area of Stack	Temp.			Conc.			
	m²	°C	m/s	Nm ³ /s	mg/Nm ³	kg/day	mg/Nm3	mg/Nm3
Apr-21	15.3	127	6.92	74.97	86	557	379	19
May-21	15.3	127	6.78	73.18	83	525	384	20
Jun-21	15.3	128	6.62	70.93	85	521	368	18
Jul-21	15.3	124	6.84	73.71	86	548	384	19
Aug-21	15.3	126	6.66	71.81	84	521	372	20
Sep-21	15.3	126	6.74	72.55	83	520	386	19

Exhibit - 2

SUMMARY TREATED EFFLUENT MONITORING RESULTS

Month		рН			TSS mg/l			BOD mg/l			Zn mg/l	
	Avg.	Vari	ation	Avg.	Variati	on	Avg.	1	ation	Avg.		iation
		Min	Max		Min	Max		Min	Max		Min	Max
Apr-21	7.3	7.1	7.4	57	48	64	19	15	22	0.23	0.13	0.39
May-21	7.2	6.9	7.4	58	50	64	19	16	22	0.25	0.13	0.39
Jun-21	7.3	7.3	7.4	57	50	63	19	15	21	0.23	0.13	0.39
Jul-21	7.2	6.9	7.4	57	50	62	20	17	23	0.21	0.13	0.39
Aug-21	7.1	6.9	7.2	57	50	61	16	12	20	0.18	0.13	0.39
Sep-21	7.1	6.8	7.3	51	44	59	19	16	23	0.26	0.13	0.39

[•] Industry has achieved Zero Liquid Discharge on 30.09.2021 so no treated effluent is being discharged since then.

Exhibit - 3

GLIMPS OF GREEN BELT DEVELOPED

POWER HOUSE GATE

THERMAL POWER PLANT AREA

Exhibit-4

LED Display Board for CAAQMS (at Factory Gate for General Public)

FORMAT - II A

Doc.: FENC - 04

Ambient air quality data at Nagda for the month of: April-2021 All results expressed as Microgram/M3

			SOUTH		¥)/.	NORTH	5	WEST		EAST	ction	Dire-
	28.04.2021	22.04.2021	07.04.2021	28.04.2021	22.04.2021	07.04.2021	19.04.2021	05.04.2021	19.04.2021	05.04.2021	Date	Hrs.
	20	16	20	10	13	13	6	16	œ	1	S02	I
	6	17	19	12	6	#	7	15	00	17	NO2	6-
3	*	5	17	3	3	12	6		. 00	17	CS2	10
	=	ಚ	20	12	=	6	Ch	15	7	6	H2S	
	19	18	16	=	10	=	4	15	10	19	S02	
	13	5	17	ಚ	3	6	o,	=	=	20		
	17	13	20	12	=		4	12	7	5	NO2 CS2 H2S	10-14
	4	10	17	13	9	12	ယ	9	6	18	H2S	
	1 8	5	5	12	=	12	00	12	9	18	S02	
	5	20	8	4	12	13	4	4	9	19	NO2	٠.
	19	=	16	4	4	6	Ch	4	9	16	CS2	18
_	6	=	8	=	6	4	o	ᡱ.	00	17	H2S S	
	18	3	8	10	9	4	7	4	=======================================	21	902 N	
	4	19	16	12	6	12	6	5	7	8	H2S SO2 NO2 CS2	18 - 22
	3	4	18	1	13	=	ω	13	10	4	_	-
	5	6	6	5	12	9	4.	ಪ	9	5	H2S S	-
	21	4	17	=	12	5	Ch	12	12	22	S02	1
	12	8	20	6	13	3	ω	8	12	ऊ	NO2 CS2	22 - 02
	8	16	21	6	6	13	4	12	=	8)2
	4	5	19	12	3	12	G	4	⇉	22	H2S	
	17	12	#	12	#	10	o	16	9	16	S02	
	5	6	8	9	12	=	Çī	16	10	17	NO2 CS2 H2S	02-
	17	12	19	= .	=	12	7	4	o	5	CS2	06
	16	4	17	9	=	=	ω	12	7	20	H2S	
	21	. 8	20	12	*	5	œ	6	12	22	S02	
	6	20	20	7	13	16	7	19	12	20	NO2	4Hrs
T.	19	5	21	=	z.	z.	7	7	=	18	CS2	
	16	16	20	13	3	4	6	15	=	22	H2S	
	18.8	14.7	16.7	11.0	11.5	12.5	6.0	14.2	9.8	19.0	100	
	14.2	17.5	18.0	11.7	11.7	13.2	5.0	15.5	9.5	17.7	SO2 NO2	
	16.3	13.5	18.5	11.8	12.0	12.0	4.8	12.3	80	15.8	2 CS2	24Hrs
				-				W.W		72		ı
	13.3	13.2	17.8	11.2	11.0	11.3	4.3	12.3	8.0	18.7	H2S	
	47	47	6	6	38	38	42	46	46	4	6-14	8 H
	45	49	48	39	4	40	40	42	49	46	14-22	rs.Avg.
	46	46	5	4	\$	39	39	48	4	42	14 14-22 22-06	PM10
	29	27	27	21	23	20	21	24	26	24		
18	26	29	25	23	21	21	23	19	28	29	6-14 14-22 22	S.Avg.
				-				_	-		100	7

FORMAT - II B

Ambient air quality data at Nagda for the month of: April-2021

Sampling location Month SO2 microgram/M3	& Year n A.M. S.D. Peak	EAST Fabrication Shop Apr. 2021 12 14.4 4.9 22 WEST	Vishou Bhawan Apr 2021 12 10 1 43 16		Club Apr. 2021 18 11.7 1.6
				-	
NO2	> A	12 1	12 1	18	10
NO2 microgram/M3	A.M.		10.3	12.2	16.6
ram/M	S.D. Peak	4	5.6	1.7	2.2
3	eak	20	19	6	20
	-	12	12	18	18
CS2 mi	A		8.6	11.9	16.1
CS2 microgram/M3	SI	4.0	4.	1.4	2.8
n/M3). Peak	18	7	7	21
		•			
H2S	D A	12 1:	12 8	18	18
H2S microgram	A.M. S.D	13.3	8.3	11.2	14.8
ram/N	S.D. F	5.6	4.3	14	2.9
3	D. Peak	22	5	4	20
1	9	o	6	9	9
	A	45	43	40	47
PM10	SD	2.2	3.2	1.5	13
PM10 microgra			48	43	49
PM10 microgram/M3	Pea	49		_	
PM10 microgram/M3	Peak G.M	45	-	6	47
PM10 microgram/M3	Peak GM	55	\$		
PM10 microgram/M3	Peak GM	6	43	9	9
PM10 microgram/M3 PM2.5	Peak GM	6	\$		
PM10 microgram/M3 PM2.5 microgra	Peak GM	6	6 21	9 21	9
PM10 microgram/M3 PM2.5 microgram/M3	Peak GM	45 6 27	6 21	9 21 1.1	9 27

FORMAT - II A

Ambient air quality data at Nagda for the month of : May-2021 All results expressed as Microgram/M3

Dire-	ction	EAST		WEST		NORTH		HTUOS	3
Hrs.	Date	03.05.2021	21.05.2021	03.05.2021	21.05.2021	NORTH 05.05.2021	23.05.2021	SOUTH 05.05.2021	23.05.2021
	S02	17	19	3	18	7	13	17	17
6-	NO2	8	15	‡	14	13	=	20	18
10	CS2	7	17	10	13	#	4	16	17
	H2S	5	18	4	12	9	10	19	18
10.	S02	19	18	16	16	12	10	15	19
10-	+	20	4	10	16	=	4	17	6
14	NO2 CS2	16	15	9	4	10	=	17	4
	H2S	18	20	6	13	12	9	15	17
	S02	17	15	=	19	=	12	16	4
14-	NO2	17	12	=	17	12	6	16	, 6
18	CS2 I	15	13	12	16	=	13	17	12
	H2S S	6	17	12	12	=	=	16	12
131	S02 N	22	6	ಪ	17	15	10	18	5
18 - 22	NO2	5	19	8	8	=	1	15	17
2	CS2	8	4	1	5	12	=	18	6
	H2S	20	6	9	4	10	10	16	16
	S02	16	17	12	5	4	12	18	16
22 - 02	NO2	16	18	17	15	10	13	19	4
02	CS2	17	16	12	8	13	6	20	5
	H2S	21	19	15	=	13	⇉	18	15
*	S02	5	13	15	18	=	=	15	13
02 -	NO2	17	16	15	20	=	12	17	74
90	CS2	15	13	13	4	10	10	17	3
	H2S	17	5	12	13	9	12	18	13
	S02	22	19	16	19	15	13	18	19
4Hrs	NO2	20	19	18	20	13	4	20	18
Max.	CS2	18	17	13	18	1	14	20	17
	H2S	21	20	15	1	13	12	19	18
	S02	17.7	16.3	13.7	17.2	12.8	11.3	16.5	15.7
24	NO2	17.2	15.7	14.2	16.7	11.3	11.8	17.3	16.2
24Hrs Avg	CS2	15.8	14.7	11.2	15.0	11.7	11.5	17.5	14.5
	H2S	17.8	17.5	12.0	12.5	10.7	10.5	17.0	15.2
8 1	6-14	43	45	4	4	41	40	45	48
8 Hrs.Avg.	14-22	4	48	4	40	38	41	46	47
. PM10	2 22-06	42	46	45	46	39	41	47	48
8 H	6-14	25	25	25	23	19	20	28	26
8 Hrs.Avg.	14-22	28	27	20	21	21	22	25	28
PM2.5	2 22-06	27	26	22	20	20	21	27	27

Tr.: Tracess

BDL: Below detectable Limit

ND: Not Detectedble

FORMAT - II B

Ambient air quality data at Nagda for the month of: May-2021

n AM. S.D. Peak n AM. S.D. Peak 2 17.0 2.2 22 12 16.4 2.1 20 22 15.4 2.4 19 12 15.4 2.8 20 2 12 16.1 1.7 19 12 16.8 1.8 20	8	SO2 microgram/M3	ogram	M3	Z	D2 mic	ogran	M3	C	CS2 microg	rogram	/M3
17.0 2.2 22 12 16.4 2.1 15.4 2.4 19 12 15.4 2.8 12.1 1.6 15 12 11.6 1.2 16.1 1.7 19 12 16.8 1.8	-	A.M.	_	Peak	,	A.M.	S.D.	Peak	7	A.M.	S.D.	P
15.4 2.4 19 12 15.4 2.8 12.1 1.6 15 12 11.6 1.2 16.1 1.7 19 12 16.8 1.8	N	17.0	2.2	22	12	16.4	2.1	20	12	15.3	1.5	OI.
15 12 11.6 1.2 19 12 16.8 1.8		15.4	2.4	19	12	15.4	2.8	20	12	13.1	2.4	
19 12 16.8 1.8		12.1	1.6	5	12	11.6	1.2	_	12	12.2	_	
		16.1	1.7	19	12	16.8	1.8		12	16.0	2.1	

EAST Fabrication Shop

Sampling location

Vishnu Bhawan NORTH Labour-Club SOUTH

	o 3	A.M.	S.D.	gram/M Peak 48	G.N
152	o	45	2.0	48	45
	6	42	2.0	45	42
	6	40	12	41	40
	6	47	=	48	47

σ	•	6	6	6	-	
27	3	21	22	26	A.M.	FMZ.5
Ξ		1.0	1.8	₫	S.D.	Bonni
28	3	22	25	28	Peak	anvms
21	3	20	22	26	G.M.	

A.M.=Arithmetic mean, S.D.=Standard Deviation, G.M.=Geometric mean,n=number of observation.

Note: Norms for SO2 .NO2 , PM10 & PM2.5 as per National Ambient Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3.

FORMAT - II A

Ambient air quality data at Nagda for the month of : June 2021 All results expressed as un/m³

		SOUTH		NORTH			WEST			EAST	ction	Dire-
ND: Not Detectedate	22.06.2021	08.06.2021	22.06.2021	08.06.2021	28.06.2021	21.06.2021	07.06.2021	28.06.2021	21.06.2021	07.06.2021	Date	Hrs.
atacta	1 19	1 17	10	1 15	1 12	16	14	14	18	19	SO ₂	-
dhia	15	19	10	10	9	15	13	15	14	16	2 NO ₂	6
-	16	6	12	12	9	14	9	1	16	ம்	CS ₂	6 - 10
-	17	₫	9	10	11	1	14	14	19	16	H ₂ S	
1	16	15	=	10	10	15	=	12	18	22	SO ₂	
1	17	17	13	4	1	17	3	1	74	₫	NO ₂	10-
1	74	17	1	10	3	74	10	17	15	13	CS ₂	- 14
ŀ	17	17		12	12	12	9	17	18	17	H ₂ S	
Ì	1 8	16	13	7	⇉	1 8	10	14	6	₹	SO ₂	
	14	15	10	4	10	5	ά	17	15	17	NO ₂	4
t	12	17	12	14	10	15	=	13	14	17	CS ₂	14 - 18
1	16	16	10	9	10	13	1	18	17	20	H ₂ S	
-	15	7 2 2	10	16	12	14	15	11	17	20	S SO ₂	
Ì	18	18	10	12	<u> 1</u>	17	16	19	18	15	2 NO2	18
-	15	18	±	10	12	15	10	14	15	15	2 CS ₂	18 - 22
-	15	-	10	10	±	1	10	15	-	18	H ₂ S	
	14	18	3	12	14	15	14	5 17	17	8 17	S SO ₂	
	15	19	12	1	10.	16	14	20	17	17	NO ₂	22
ŀ	15	20	1	1	10	17	=======================================	18	1	18	O ₂ CS ₂	22 - 02
ŀ	4	16	12	12	13	10	=	20	19	17	H ₂ S	
		- A	- 2	- 1			_			_	S SO ₂	
	5	15 2	12	10	12	9	о -1	10 1	14	5 2	_	0
ŀ	14 16	20 17	13	10 12	1 12	19 15	13 12	15 17	16 14	20 14	NO ₂ CS ₂	02 - 06
-	6 12	7 15	11	2 10	2 14	5 12	2 15	7 19	14	4 16	S ₂ H ₂ S	
	19	100	13	16	14	19	15	17	18	22	S SO ₂	
	18	20	ವ	12	13	19	16	20	18	20	NO2	4Hrs
-	7000			77.0			- 10	25.4	00	100	D ₂ CS ₂	rs Max.
	16 1	20 1	12 1	14	12 1	17 1	12 1	18 2	16 1	18 2	-	ax.
-	17 16	18 16	12 11	12 12	14 11	13 16	15	20 13	19 16	20 18	H ₂ S S	
	16.3	16.5	11.2	12.8	11.8	16.2	13.2	13.0	16.7	18.5	SO ₂	
	15.5	18.0	11.3	10.8	10.7	16.7	13.7	17.3	15.7	17.2	NO ₂	24Hrs A
	14.7	17.5	11.3	11.5	10.7	15.0	10.5	15.0	14.2	15.3	CS ₂	Avg
	15.2	16.7	10.5	10.5	11.8	11.5	11.7	17.2	17.5	17.3	H ₂ S	
	47	46	41	40	40	42	41	45	46	4	6-14	8
	49	4	40	39	4	4	43	47	47	43	14-22	Hrs.Avg.
	48	46	42	40	40	46	42	47	47	42	22-06	PM10
	27	27	22	0 0	22	20	24	25	26	28	6-14	
-	26	26	20	20	20	22	22	26	27	26	14-22	8 Hrs.Avg. PM2.5
-	25	27	22	21	21	21	25	26	25	25	2 22-06	PM2.5

FORMAT - II B

Ambient air quality data at Nagda for the month of: June 2021

Sampling location	Month		SO2	нд/т	13		NO ₂		μg/m ³			CS ₂	µg/m	a			H ₂ S	µg/m³			PM1	PM10 microgram/M3	gram/	ИЗ		PM2	PM2.5 microgram/M3	gram	>
	& Year	n	A.M.		S.D. Peak	n	AM		S.D.	Peak	5	A M	S.D.	Peak		n	A.M.	S.D.	Peak	5	A.M.		Peal	G.M	2	A.M.	s.D.	D. Peak	-
EAST	Jun. 2021	18	18 16.1	3.0	22	_	18 16.7	.7	1.8 20	20	18	14.8	2.0	18		18	17.3	1.8	20	9			47	1.8 47 45		2		9 28	~
Fabrication Shop																8		1	N	0		_		à		-			
WEST	Jun. 2021	200	13.7	2.5	19	_	18 13.7	-	2.8	19	18	12.1	2.3	17		18	11.7	1.6	5	9	41	1.0	43	41		2	22 1.6	6 25	
Vishnu Bhawan	2010/07/07/07/04/04	000		COLUMN TO A STATE OF		-		_		275	29			NOW.		0.000		0	1000000	2			_				_	_	
NORTH	Jun. 2021	12	12 12.0	2.0	16	_	12 11.1	_		ವ	12	11.4	1.0	14		12	10.5	1.0	12	0	40	0.9	42	40		2	21 1.4	4 22	
Labour-Club						_		_												_		-		_				_	
SOUTH	Jun. 2021	12	16.4	1.5	19	12	2 16.8		2.0	20	12	16.1	1.9	20	-	12	15.9	1.7	8	6	47	1.6	49	47	6	N	26 0.7	7 27	-
Dairy							_																_	_				_	

FORMAT - II A

Ambient air quality data at Nagda for the month of : July-2021 All results expressed as Microgram/M3

Dire-	ction	EAST		WEST		NORTH		SOUTH	
i		05.07	19	05.07	19.07	1 06 07	20.07	106.07	20.07
Hrs	Date	07.2021	19.07.2021	07.2021	07 2021	07 2021	07 2021	07 2021	07.2021
i	S02	21	79	10	15	4	9	18	20
6-	NO2	19	5	15	19	⇉	ಡ	20	4
10	CS2	4	4	10	17	4	=	20	14
1	H2S	20	17	15	10	. 69	10	17	100
	SO2	20	00	12	35	12	-4	16	17,
10-	NO2	17	ಪ	12	16	10	12	3	ಪ
14	CS2	12	12	Θ	15	=======================================	-1	17	12
	H2S	6	19	10	7	1	Ø	16	12
	SO2	19	4	14	17	10	12	15	16
14-1	NO2 (20	12	16	Ť,	12	10	5	15
œ	CS2 I	13	ಪ	12	14	12	10	17	o o
	H2S	5	5	9	ಪ	10	10	S	5
	SO2	21	16	=======================================	ಪ	5	10	4	4
18 - 22	NO2	15	17	75	17	1	7	6	16
N	CS2	17	4	10	12	1	Ф	16	15
	H2S	1	16	12	12	12	N	ő	ದೆ
	S02	oo −	5	Ö	8	7	9	17	14
22 - 1		18	15	12	17	10	10	17	18
02	CS2	5	12	12	18	10	13	19	15
	H2S	16	€	13	14	2	10	14	4
	SO2	17	16	ಪ	17	ದೆ	4	5	17
02-		17	8	4	18	ω	12	8	ñ
90	CS2	=	4	10	4	=	10	ch ch	4
	H2S	17	17	4	$\vec{\omega}$	12	9	あ	ü
	SO2	21	19	क	-	15	12	8	20
4Hrs	NO2	20	-	6	19	12	ಪ	20	180
Max	CS2	17	4	12	8	4	ಪ	20	16
	H2S	20	19	ď.	14	12	12	19	78
	S02	193	16.3	12.5	15.8	12.5	10.3	15.8	16.3
241	NO2	17.7	15.2	14.0	17.0	10.5	≓ ω	17.3	14.7
24Hrs Ava	CS2	13.7	13.2	10.5	15.0	11.5	10.7	17.3	14.3
	H2S	17.2	17.0	12.2	12.2	10.8	10.0	16.2	14.2
00	6-14	40	47	42	40	39	42	44	48
Hrs Ava "	14-22	48	45	44	41	4	4	47	4
- PM10	2 22-06	47	46	43	41	40	40	45	47
	0,	27	27	23	21	20	21	26	26
÷	6-14 14-22	25	25	24	20	19	22.	25	25
8 Hrs Ava '	Dell's						Marie .	0=0:	

FORMAT - II B

Ambient air quality data at Nagda for the month of: July-2021

BDL: Below detectable Limit

Tr.: Tracess

ND: Not Detectedble

A.M.	rogram/M3 S.D. Pea	2 microgram/M3 A.M. S.D. Peak	70	CS2 microgram/M3	s.D.		/M3 Peak	ak	ak .
16.4	23	20	12	13.4	7.6	17		12	12 17.1
15.5	1/3	19	12	12.8	2.8	6	10001	12	12 12.2
10.9		ಪ	12	11.6	-	4		12	12 10.4

EAST Fabrication Shop WEST

12 12

14.2

1.8

12 12

12 | 17.8

2.2

21 18 15 20

N

Sampling location

Month & Year

n A.M. S.D. Peak

Labour-Club SOUTH

July-2021 July-2021 July-2021 July-2021

12

16.1

1.8

12 16.0 2.2 20

12 15.8

2.1

20

12 15.2

Vishnu Bhawan NORTH

17.7		1.00	1.6	S.D.	ograr
2.23	12	th ch	20). Peak	n/M3
on .	0	o)	Ø	n	
46	41	42	47	A.M.	PM1
4	0	i w	1.0	S.D.	0 micro
400	42 .	4	48	Peak	gram/l/
46	40	42	46	G.M.	ಹ
Ø	0	(J)	o)	n	

A.M.=Arithmetic mean. S.D.=Standard Deviation, G.M.=Geometric mean,n=number of observation.

Note: Norms for SO2, NO2. PM10 & PM2.5 as per National Ambient Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and HZS = 150 µg/m3.

FORMAT - II A

Ambient air quality data at Nagda for the month of: August-2021 All results expressed as Microgram/M3

Hrs. 6-10 10-14 Date SO2 NO2 CS2 H2S SO2 NO2 CS2 H2S SO2	06.08.2021 20	15.08.2021	96	and .	0					
6 - 10 10 - 14 NO2 CS2 H2S SO2 NO2 CS2 H2S	N	2021	06.08.2021	15 08 2021	07.08.2021	17.08.2021	27.08.2021	07.08.2021	17.08.2021	27.08.2021
10 10-14 CS2 H2S SO2 NO2 CS2 H2S	0	17	15	d	10	9	9	16	₹	19
10 - 14 82 H2S SO2 NO2 CS2 H2S	15	ಧ	12	4	10	=	7	20	19	15
SO2 NO2 CS2 H2S	7	15	10	ಚ	10	=	12	15	17	4
10 - 14 NO2 CS2 H2S	17	18	ವ	10	=	10	12	18	*17	4
CS2 H2S	21	17	14	14	12	10	12	5	20	6
CS2 H2S	16	14	74	16	10	10	15	4	21	12
H2S S02	ಪ	15	9	12	=	5	12	74	19	17
S02	20	6	10	=	12	==	ದ	3	20	4
	19	16	1	35	5	=	10	17	õ	7
NO2	17	16	ಪ	17	9	9	4	13	17	14
18 CS2	6	14	10	5	ಘ	12	=	6	17	8
H2S S	19	15	9	ಪ	10	12	=======================================	16	23	12
SO2 NO2	20 1	15	13	17 1	12	12	=	17	19	16
B. 76	16	17 1	17	15	12	3	3	15	20	5
S2	4	16	72	7	10	=	12	17	8	4
H2S S	7	19	=======================================	12	9	9	10	19	21	15
SO2	17	4	5	8	16	3	12	कं	17	20
NO2 CS	≅	16	15	ಪ	=	4	≐	8	8	4
02 CS2	15	12	10	ವ	12	4	10	19	20	18
H2S	17	4	ಪ	10	==	12	12	16	19	4
S02	16	15	74	5	=	12	ಚ	4	21	16
NO2	19	15	12	17	ದೆ	ಘ	12	19	17	ವ
CS2 H2S	17	ವೆ	9	16	12	12	=	17	15	19
H2S	15	12	15	=	9	12	10	7	18	15
S02	21	17	15	18	16	12	13	17	21	20
NO2	19	17	17	17	13	14	15	20	21	16
CS2	17	16	12	17	13	4	12	19	20	19
H2S	20	19	ಹ	ಚ	12	12	ಚ	19	23	5
S02	18.8	15.7	13.7	15.8	12.7	10.8	11.2	15.7	18.8	17.7
SO2 NO2	16.8	15.2	13.8	15.3	10.8	11.3	13.2	16.5	18.7	13.5
2 CS2	14.8	14.2	10.0	14.3	11.3	11.7	11.3	16.3	17.7	16.7
H2S	17.0	15.7	11.8	11.2	10.3	11.0	11,3	16.3	19.7	14.0
6-14	43	45	40	41	41	40	41	45	48	46
14-22	44	46	42	40	40	40	40	46	48	47
6-14 14-22 22-06	46	46	4	42	40	4	40	45	47	47
	27	27	23	21	19	21	22	26	26	28
14-2	26	25	22	22	21	20	21	27	25	27
6-14 14-22 22-06	26	26	24	20	20	22	22	25	26	26

FORMAT - II B

Ambient air quality data at Nagda for the month of: August-2021

Control of the Contro	H2S microgram/M3	8 PMT0 microgram/M3	ogram/M3	TML	PMZ.5 microgram/M3
ak n A.M. S.D. Peak n	A.M. S.D.	ak n /	S.D. Peak G.M.	n A.M.	S.D. Peak
			5		
12 16.0 1.6 19 12 14.5 1.4 17	16.3 2.3	o 45	46	6 26	0.7
Bhawan Aug. 2021 12 14.8 1.7 18 12 14.6 1.8 17	11.5 1.7	6 41	42		
11.8 1.8 15 18 11.4 1.1 14	10.9 1.2	40	4		1.0 22
Dairy Aug 2021 18 17.4 1.9 21 18 16.2 2.9 21 18 16.9 1.8 20 18	16.7 2.8	9 47	1.1 48 47	9 26	0.9 28

FORMAT - II A

Ambient air quality data at Nagda for the month of : September-2021 All results expressed as Microgram/M3

	OUTH		NORTH		WEST		EAST	ction	Dire-
22.09.2021	SOUTH 08.09.2021	22.09.2021	08.09.2021	20.09.2021	06.09.2021	20.09.2021	06.09 2021	Date	Hrs.
19	20	10	12	15	16	15	1	S02	-0
20	₽	10	14	15	15	12	17	NO2	- 6
20	17	12	13	1	10	14	19	CS2	- 10
22	19	12	10	1	14	17	18	H2S	
18	19	1		4	4	क	18	SO2	
17	21	9	15	15	12	17	19	-	10-
19	22	10	12	15	12	ಪ	17	NO2 CS2 H2S	14
21	-	11	=	10	12	15	19	H2S	
16	16	10	10	16	ಭ	8	17	SO2	
16	18	10	12	14	14	14	6	NO2	14-
15	17	14	3	18	13	15	16	CS2 H2S	18
19	20	10	14	12	10	13	17		
∞	8	12	13	5	16	14	21	SO2 1	
8	20	12	12	16	8	16	8	NO2	18 - 22
17	19	=	9	4	12	15	1 55	CS2	2
20	17	ವ	10	3	ಭ	17	16	H2S	
21	19	12	14	17	7	16	20	S02	
19	17	10	12	17	17	16	19	NO2	22-
1 8	21	13	12	15	4	13	180	CS2	02
17	20	12	13	10	13	15	21	H2S	
20	15	1	10	16	15	15	6	S02	
17	18	13	4	13	16	4	20		02-
16	20	12	13	13	<u> </u>	7	17	NO2 CS2	90
20	19	ಪ	12	12	12	ゴ	₩	H2S	
21	20	12	4	17	16	18	21	S02	
20	21	ಡ	15	17	200	17	20	NO2	4Hrs
20	22	4	13	1 00	4	15	19	CS2	Max.
22	20	13	4	12	4	17	21	H2S	
18.7	17.8	11.0	11.7	15.5	14.2	15,5	18.0	S02	
17.8	18.7	10.7	12.7	15.0	15.3	14.8	18.2	NO2	241
17.5	19.3	12.0	11.7	14.3	12.0	14.0	17.0	CS2	24Hrs Avg
19.8	18.8	11.8	11.7	11.0	12.3	14.7	18.2	H2S	
45	47	4	37	40	43	45	46	6-14	8
46	44	40	39	4	4	45	48	14-22	8 Hrs. Avg. PM10
48	46	41	38	42	42	4	45	2 22-06	PM10
27	28	22	20	21	22	26	25	6-14	+
25	26	21	19	20	19	27	28	14-22	8 Hrs.Avg.
26	28	20	21	21	20	25	27	2 22-06	٦τ

BDL: Below detectable Limit Tr.: Tracess ND: Not Detectedble

FORMAT - II B

Ambient air quality data at Nagda for the month of: September-2021

Sampling location	Month	S	SO2 microgram/M3	ogram	M3		Z	NO2 microgram/M3	ogram	1/M3	CS	2 micro	CS2 microgram/M3	M3	_	12S micr	ogram/	M3		PM10	micro	gram/M.	ω	
- 13	& Year	3	n A.M. S.D. Peak	S.D.	Peak	1	п	n A.M. S.D. Peak	S.D.	Peak	3	A.M.	n A.M. S.D. Peal	Peak	ח	n A.M. S.D. Peak	S.D.	Peak	 n	A.M.	S.D.	Peak	G.M.	200
TS	September-2021	12	12 16.8	2.0	21		12	12 16.5	23	20	12	15.5	1 8	19	12	16.4	2.6	21	O	46	3	48	45	
brication Shop	September-2021	12	12 14.8	1.6 17	17		12	12 15.2 1.7	1.7	1 8	12	13.2	2.1	18	12	11.7	1.2	14	o	42	1.0	• 43	4	
shnu Bhawan RTH	September-2021	12	12 11.3 1.2	12	14		12	12 11.7 1.7	1.7	15	12	12.3		14	12	11.8	1 3	14	o	39	1.5	4.	39	
OTH CIUB	September-2021		12 18.3 1.7 21	1.7	21		12	12 18.3 1.4 21	1.4	21	12	18.4	2.0	22	12	19.3	1.4	22	o	46	13	48	46	
																								۰

Vishnu Bhawan NORTH

Fabrication Shop WEST

EAST

Labour-Club SOUTH

な	12	12	12	ח	I
19.3	11.8	11.7	16.4	A.M.	H2S micros
1.4	1.3	1.2	2.6	S.D.	ram
22	4	14	21	Peak	/M3
0	6	6	0	ח	

PM2.5 microgran		6 26 1.1	6 21 1.0	6 21 1.0	
m/M3	Peak	28	22	22	28
	G.M.	26	20	20	27

| Dairy | Dair

Monitoring the Implementation of Environmental Safeguards Ministry of Environment, Forest & Climate change Regional Office (WZ) Bhopal Monitoring report

DATA SHEET

Sr.	Particular DATA S	
No.	Particular	Reply
1.	Project Type: River Valley / Mining / Industry / Thermal/Nuclear/Other (Specify)	Captive Thermal Power Plant
2.	Name of the Project	Grasim Industries Limited, 40 MW Thermal Power Plant, Birlagram, Nagda – 456 331 M.P.
3.	Clearance letter(S) /OM No. and date	OM No. J-13011/18/94-IA/II dated 01.03.1995
4.	Location:	
a	District	Ujjain
b	State	Madhya Pradesh
С	Location / latitude / longitude	Birlagram, Nagda Latitude 23.4483, Longitude 75.4081 (23°26'53.9"N 75°24'29.2"E)
5.	Address for correspondence	Mr K Suresh, (Sr. President & Unit Head)
a	Address of concerned Chief Engineer (With Pin Code & Mob. No./Telephone/Telefax/E-mail)	Grasim Industries Limited 40 MW Thermal Power Plant, Birlagram, Nagda – 456 331 Madhya Pradesh E-Mail - environmentcell@adityabirla.com Telephone - 07366 - 246760
b	Address of concerned Project Engineer (With Pin Code & Mob. No./Telephone/Telefax/E-mail)	Mr Minesh Agarwal, (Vice President) 40 MW Thermal Power Plant Staple Fibre Division, Birlagram, Nagda – 456 331 Madhya Pradesh E-Mail - environmentcell@adityabirla.com Telephone - 07366 - 246760
6.	Salient Features .	
a	Of the project	The self-Generation of power meet the total requirement of M/s Grasim Industries Limited.
b	Of the Environment Management Plan	 Two Electrostatic Precipitator connected to each Boiler Ash Handling Plant for collection of Fly Ash and Silo for storage of the Fly Ash Lamella Clarifier for separation of fly ash from waste water Full Fledged Common ETP for treatment of Waste Water Mechanical Coal Handling System, Sprinklers System for Dust Suppression Covered Coal Conveyor System

Sr. No.	Particular	Reply
7.	Production details during compliance period and during the previous financial years.	Generation of Power *Apr-21 – September-21 – 0.004 MWh FY 2020-2021 – 2.7 MWh
8.	Breakup of the Project Area	
a	Submerged area: forest & Non Forest	None
b	Others	1.3 Hectare in existing premises
9.	Breakup up of the project affected populations with enumeration of those losing house/dwelling unit only agricultural land & land less labours/artisan	Project is setup in existing premises and no population is affected.
a	SC, ST, Adivasi	
b	Others (Please indicate whether these figures are based on any scientific and systematic survey carried out give details and year of survey)	
10.	Financial Detail	
a	Project Cost as originally revised	75 Crores
	estimates and the year of price reference	
b	Allocation made for environment management plan with item wise and year wise break up	 Electrostatic Precipitator 2 Nos - Rs. 238 Lacs Fly Ash handling system - Rs 45.38 Lacs. Stack 76-Meter Height - Rs.63.13 Lacs Dust Suppression System - Rs. 9.67 Lacs Water Recycling System - Rs. 4.27 Lacs Industry has also installed Continuous Emission Monitoring System (CEMS) at Stacks - Rs. 26.43 Lacs.
С	Benefits cost ratio/internal rate of return and the year assessment (if applicable)	Not Applicable
d	Whether above includes the cost of environment management as shown in the above	Not Applicable
е	Actual expenditure incurred on the project so far	95.86 Crores
f	Actual expenditure incurred in the environment management plan so far	4.98 Crores
11.	Forest Land Requirement	Project is in existing premises.
a	The status of approval for diversion of forest land for non-forestry use	Not Applicable
b	The status of cleaning felling	
С	The status of compensatory afforestation, if any	
d	Comments on the viability & sustainability of compensatory	

Sr. No.	Particular	Reply
	afforestation programme in the light of actual field experience so far.	Kw i 'n T' i i i i
12.	The status of clear felling in non-forest areas (Such as submerged area of reservoir, approach roads) if any with quantitative information	Not Applicable
13.	Status of construction	Actual date of commissioning is 04.08.1996
a	Date of commencement (Actual and /or Planned)	
b	Date of completion (actual and /or Planned)	
14.	Reasons for the delay if the project is yet to start	Not Applicable
15.	Details of site visit The dates on which the project was monitored by the MoEF & CC, Regional Office on previous occasions.(If applicable)	NA
b	Date of site visit for this monitoring report	
16.	Details of correspondence with project authorities for obtaining action plans/information on status of compliance to safeguards other than the routine letters for logistic support for site visit (The first monitoring report may contain the details of the letters issued so far but	Communication Received from Regional Office, Western Region of MoEF & CC vide File No.4-1/1995/(ENV)/146 dated 06.02.2020. Communication had following instruction for industry; 1. Instruction for mentioning Permissible Value in future submission of quarterly Emission & Discharge Monitoring
	the later reports may cover only the letters issued subsequently)	Reports – Industry has incorporated the same in monitoring reports for future submission.
		 Instruction for submission of Data Sheet with Six Monthly Compliance Report – Industry has included the Data sheet in six monthly compliance report.
- 1		Industry has also communicated the same vide our letter dated 1486A/Env-SFD/MoEF/RO(W)/BPL/40MW dated 18.02.2020.