

November 24, 2025

No.2069/Env-SFD/MOEF/RO/BPL/EC-40MW

Director
Ministry of Environment, Forest and Climate Change,
Regional Office (WZ),
E-5, Kendriya Paryavaran Bhawan,
E-5 Arera Colony, Link Road-3,
Ravishankar Nagar,
Bhopal – 462016

Sub: Submission Environment Clearance Compliance Report for the period from April 2025 to September 2025 for Grasim Industries Limited, 40 MW Thermal Power Plant, P.O. Birlagram, Nagda, District Ujjain – 456 331, M.P.

Ref: Environment Clearance Issued vide File No. J-13011/18/94-IA II

Dear Sir,

This has reference to above cited environment clearance & condition prescribed therein and provisions of Section 10 of EIA Notification, dated 2006.

We are enclosing with this letter Six Monthly point wise Environment Clearance Compliance Report and summary of monitoring results for the period from **April 2025 to September 2025** of Grasim Industries Limited, 40 MW Thermal Power Plant.

We are also sending the compliance report to MoEF&CC Regional Office, Bhopal through e-mail address on rowz.bpl-mef@nic.in.

Hope you will find the information provided in order, we shall be happy to furnish further details / clarifications, if required.

Thanking you, Yours faithfully

6

Shantanu A Kulkarni President & Unit Head

CC:

- 1. Ministry of Environment Forest & Climate Change, New Delhi
- 2. Central Pollution Control Board, Zonal Office, Bhopal
- 3. Madhya Pradesh Pollution Control Board Bhopal
- 4. Assistant Director, Office of Textile Commissioner, Mumbai

Enclosed: As Above

SIX MONTHLY COMPLIANCE REPORT OF ENVIRONMENT CLEARNACE FOR

GRASIM INDUSTIRES LIMITED, (40MW THERMAL POWER PLANT)
BIRLAGRAM, NAGDA – 456 331
DIST. UJJAIN (M.P.)

Submitted to:

Ministry of Environment Forest & Climate Change, (WR Office) Bhopal

Ministry of Environment Forest & Climate Change, New Delhi

Central Pollution Control Board, Zonal Office, Bhopal

Madhya Pradesh Pollution Control Board - Bhopal

Submitted by:

Grasim Industries Limited, (40MW Thermal Power Plant)

Birlagram, Nagda - 456 331

District: Ujjain (M.P.)

Period: APRIL 2025 - SEPTEMBER 2025

Submitted on: 1ST DECEMBER 2025

Contents

Sr. No.	Title	Page No.
1	Introduction	1
2	Compliance Status of Environment Clearance for Grasim Industries Limited, 40MW Thermal Power Plant, Birlagram, Nagda – 456 331	2 - 6

List of Annexures

Exhibit -1	Summary of Emission Monitoring results of reporting period
Exhibit -2	Images of Treated Effluent Plant & Zero Liquid Plant
Exhibit -3	Glimpse of plantation in the complex
Exhibit -4	Image of the display board at Factory Gate showing environmental parameters for general public
Exhibit -5	Ambient air quality monitoring results in Grasim Complex (SFD, EFD & CPP) of reporting period

Introduction

- Grasim Industries Limited (GIL), incorporated on 25th Aug., 1947; is a flagship company of the Aditya Birla Group and India's pioneer in manufacturing of Viscose Staple Fibre (VSF) a man-made, biodegradable fibre with characteristics akin to cotton.
- 2. M/s. Grasim Industries Ltd. has four VSF Plants in India which are located at Nagda (Madhya Pradesh), Harihar (Karnataka), Kharach & Vilayat (Gujarat).
- 3. 40 MW Thermal Power Plant is coal based thermal power plant located at Birlagram, Nagda.
- 4. All the operation related permits, including Environmental Clearance from MOEF & CC and Consents to Establish (CTE) & Consent to Operate (CTO) has obtained from M.P. Pollution Control Board, Bhopal are in place.
- Environmental quality monitoring in & around the Plant site is being carried out by M.P. Pollution Control Board, in-house Laboratory & NABL accredited laboratory on a regular basis.
- 03 No. of Continuous Ambient Air Quality Monitoring Stations (CAAQMS) along with other Environmental Parameter from Grasim Complex (SFD, EFD & CPP) displayed on LED Board at main gate of the Plant Premises.
- 7. Online Continuous Emission Monitoring System (CEMS) is installed at stack and connected with M.P. Pollution Control Board and CPCB, New Delhi.
- Industry has completed ZLD Project as per stipulation given by MPPCB, CPCB, & MoEFCC, Bhopal on 30.09.2021.
- 9. A vast green belt is developed to curb the emission and also to improve environmental conditions in & around Grasim complex.
- Point wise compliance status of Environmental Clearance for Grasim Industries Limited, 40MW
 Thermal Power Plant Fibre Division, Birlagram, Nagda is furnished herewith;

Environment Clearance

(Grasim Industries Limited, 40 MW Thermal Power Plant) MOEF Ref. O.M. No: J-13011/18/94-IA. II dated 01.03.1995 Period - OCTOBER 2024 – MARCH 2025

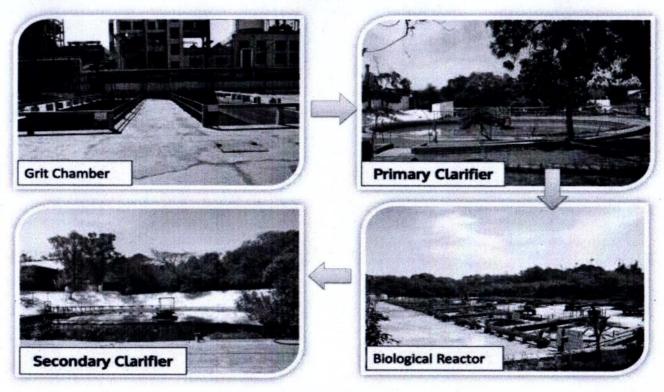
Sr.	Conditions and Environmental Safeguards	Compliance Status
	M/s Grasim Industries Limited may refer to proposal dated 26.08.1994 on the subject mentioned above. The Proposal has been examined and accorded clearance from environmental angle subject to effective implementation of the following conditions and environmental safeguards:	Acknowledged
	All the conditions stipulated by the State Pollution Control Board shall be implemented effectively.	Industry is complying the conditions laid down by state pollution Control Board and has valid consents & authorization issued by M.P. Pollution control board; Consent under The Water (Prevention and Control of Pollution) Act, 1974 issued vide Letter No. AWH-62427 dated 25.06.2025 valid up to 31.05.2030. Consent under The Air (Prevention and Control of Pollution) Act 1981 issued vide letter no. AWH-62427 dated 25.06.2025 valid up to 31.05.2030 Authorization under the hazardous waste rule issued vide No. AWH-62427 dated 25.06.2025 valid up to 30.04.2030
2	A stack height of not less than 76 meters shall be provided along with ports for stack monitoring	A stack of 76-meter height constructed and stack monitoring port has been provided for sampling. Online Continuous Monitoring System (CEMS) is also provided at stack and connected to M.P. Pollution Control Board and Central Pollution Control Board, New Delhi.

Sr.	Conditions and Environmental Safeguards	Compliance Status
3	The Electrostatic precipitators having an efficiency of not less than 99.8% shall be installed.	Two High Efficiency Electrostatic Precipitators having three field each has been provided to boilers, which are performing efficiently to meet particulate emission norms. Emission monitoring is done and reports are being submitted to Regional Officer, MoEF&CC, Bhopal regularly. The current status of ESP efficiency is 99.86 %
4	The particulate emission shall not exceed the prescribed limit of 350 mg/Nm3 at any time	Two High Efficiency Electrostatic Precipitators have been provided to boilers, which are performing efficiently to meet particulate emission norms. Emission monitoring is done and reports are submitted to Regional Officer, MoEF&CC, Bhopal regularly. Summary of emission monitoring report for reporting period is enclosed as Exhibit -1
	mace in the	Complied, following measured has been taken to control dust pollution from coal storage and handling area; Water Sprinkler System is provided at coal unloading points i.e. at Truck Tippler and Wagon Tippler Water Sprinkler System has been provided at coal storage area Coal is transferred through covered conveyer system. Coal Storage is under shed. Dust Suppression system is provided at al transfer point of coal conveyer. Dust extraction system with bag filter is provided in coal crusher house Thick plantation has been done
	Control of the second of the s	Dust level is monitored regular basis in coal handling area and monitoring results are well within the norms.
6	Closed circuit cooling with induced draft cooling tower shall be provided	Closed circuit cooling tower with induced draft has been provided.
7	The liquid effluents will be suitably treated to conform to the prescribed standards before being discharged into nallah. Efforts should	Industry has a full-fledged common effluent treatment plant equipped with primary and secondary treatment

Sr.	Conditions and Environmental Safeguards	Compliance Status
A tea	be made to utilize the treated effluent to the maximum extent possible so as to conserve water.	facility based on activated sludge process. The treated waste water sent to ZLD plant for further treatment and RO water utilized in manufacturing process. No treated effluent is being discharged. Images of common effluent treatment plant and ZLD plant is enclosed as Exhibit -2
8	An effective and workable plan of ash utilization starting with at least 20% utilization during the first year which may gradually increase by 10% every year so as to achieve 100% utilization by the end of the ninth year may be prepared and submitted. While disposing of the ash through sale to outside parties, it needs to be ensured that the ash is used in an environmentally compatible manner and does not pose any environmental hazard	Industry has installed fly ash collection system and achieved 100% utilization of fly ash in Cement & Brick Manufacturing Industry. Industry has been regularly submitting the Annual Implementation fly ash Report for compliance of the provisions of Fly Ash Notification. Last Annual Fly Ash Report is submitted vide our letter No. 2022/Env-SFD/PCB/BPL/Fly Ash on 25.04.2025. In our industry website also the details of ash generation and utilization data are available for public.
9	Workers in the high noise area will be provided with ear protection devices.	Appropriate personal protective equipment's (PPEs) has been provided to employees based noise level at workplace and required noise insertion loss. Noise monitoring has been done regularly to identification of high noise area & adopt appropriate control measure.
10	Green belt of adequate width with suitably selected species should be raised all around the power plant as also around the ash dump area and coal handling area.	Green belt has been developed in industrial complex. Selected species for has been raised in power plant area and coal storage area. Images of green belt provided in power plant area is enclosed as Exhibit -3.
11	Regular monitoring of the air quality around the power plant may be carried out and records maintained. Periodic report of air quality may be submitted to this Ministry. Data on S02 emission should be rechecked and furnished to the ministry within three months.	Regular monitoring of the ambient air quality around the industrial campus (SFD, EFD & CPP) is being carried out on regular basis and record are being maintained. Industry has installed 03 (Three) Nos of Continuous Ambient Air Quality Monitoring system (CAAQMS) for Grasim (SFD, EFD & CPP) in consultation with M.P. Pollution Control Board for continuous monitoring of ambient air quality and monitoring

Sr.	Conditions and Environmental Safeguards	Compliance Status
		results are being displayed on 6 feet X 12 feet LED display board at factory gate for public. Image of the LED display board is enclosed as Exhibit -4. Four ambient air quality monitoring station in all four directions of Grasim complex (SFD, EFD & CPP) has been setup in consultation with CPCB & MPPCB. Regular monitoring of ambient air quality is being carried out and report is being submitted to MPPCB and CPCB and Regional Office of MoEF&CC. Monitoring results are well within the prescribed standards. Report of the reporting period is enclosed as Exhibit -5.
12	Status report on the compliance of pollution standards in respect of existing units may be furnished to this ministry within three months.	Emission and Discharge monitoring from existing units is being carried out and results are in compliance with regulation. Summary of emission monitoring report for reporting period is enclosed as Exhibit -1 No treated effluent is being discharged. Images of common effluent treatment plant and ZLD plant is enclosed as Exhibit -2
13	Separate funds should be allocated for implementation of Environment protection measures along with item wise breakup. These cost should be included as part pf the project cost. The funds earmarked for environmental protection measures should not be diverted for other purposes.	Separate fund was allocated for environmental protection in the project cost and item wise breakup is as follows; • Electrostatic Precipitator 2 Nos - Rs. 238 Lacs • Fly Ash handling system - Rs 45.38 Lacs. • Stack 76-Meter Height - Rs.63.13 Lacs • Dust Suppression System - Rs. 9.67 Lacs • Water Recycling System - Rs. 4.27 Lacs • Industry has installed Continuous Emission Monitoring System (CEMS) at Stacks - Rs. 26.43 Lacs.

Sr.	Conditions and Environmental Safeguards	Compliance Status
14	The stipulated conditions will be monitored by our Regional Office, Located in Bhopal.	Acknowledged
15	A half yearly report on the status implementation of the stipulated conditions and environmental safeguards shall be submitted to this Ministry.	A half yearly compliance monitoring report is being submitted to MoEF&CC regularly. Industry has submitted last six monthly compliance report vide letter No. 2034/Env-SFD/MoEF/RO/BPL/EC-40MW dated 19.05.2025 for the period from October 2024 to March 2025.
16	The conditions stipulated may be varied or new ones added of the clearance revoked if necessary on the interest of environment protection	Acknowledged
17	The stipulations will be implemented among others under the Water (Prevention and Control of Pollution) Act, 1974 the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 and the amendments made therein from time to time.	Acknowledged, compliance of all applicable regulatory requirement is being ensured.


Exhibit - 1

SUMMARY EMISSION MONITORING REPORT

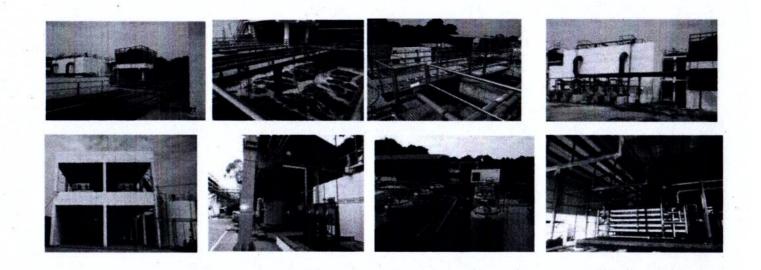
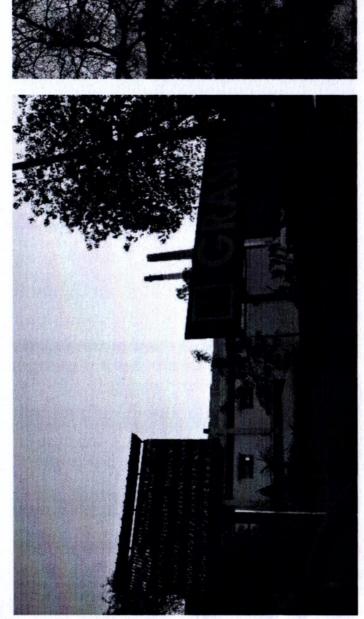

Month	Cross Sectional Area of Stack	Stack Temp.	Velocity	Flow	Emission Conc.	Emission	SO2	NOX
	m²	°C	m/s	Nm³/s	mg/Nm³	kg/day	mg/Nm3	mg/Nm3
Apr-25	15.3	126	6.33	68.00	82	482	395	20.10
May-25	15.3	125	6.36	68.55	81	480	392	20.12
Jun-25	15.3	123	6.16	66.31	80	474	382	19.56
Jul-25	15.3	125	6.22	66.63	81	466	399	20.27
Aug-25	15.3	126	6.26	66.95	82	474	395	20.11
Sep-25	15.3	128	6.32	67.57	80	467	389	19.91

Exhibit-2


Effluent Treatment Plant

Zero Liquid Discharge plant.

LED Display Board for CAAQMS (at Factory Gate for General Public)

FORMAT - II A

Ambient air quality data at Nagda for the month of: April-2025

	22.00	2	77	21	8	2	22	8	8	24	8
	14-22	a	*	8	B	8	8	ō	2	8	2
	414	8	8	2	g	5	22	2	23	8	8
٠	22-08	4	\$	9	4	\$	*	4	1	4	\$
	14-22	Ŧ	4	39	Ŧ	88	\$	Ŧ	4	\$	\$
	6-14	9	\$	8	4	8	9 -	4	1	9	9
Ī	HZ8	17.8	17.3	122	12.8	12.5	17.0	14.0	18.2	13.2	18.2
	CS2	17.7	16.3	12.8	13.8	11.5	18.3	14.7	18.0	13.0	50.5
-	N02	17.5	17.0	12.5	15.3	11.8	18.2	12.7	16.8	14.8	19.8
1	805	17.7	17.5	12.0	14.3	12.7	18.0	14.2	18.2	13.8	50.5
4	HZS	8	8	7	7	7	9	9	8	5	8
١,	CSZ	6	. 6	5	15	*	8	6	8	51	.8
- SILLS	NO2	5	8	2	6	5	8	ā	85	11	8
	802	8	8	7	11	2	8	9	8	9	83
	HZS	9	+	9	12	1	8	9	8	12	á
8		6	6	12	5	5	6	7	20	*	7
8	NO2 CS2	6	8	9	15	12	8	=	9	12	8
	802	8	8	12	1	7	8	\$	₽	F	8
1	HZS	9	85	4	7	12	6	*	1	5	6
62	NO2 CS2	8	4	F	5	9	6	9	8	9	z
22-02		11	11	*	5	12	\$	ā .	5	5	7.
	802	1	20	ŧ.	11	5	5	5	5	ā	2
	H2S	8	20	£.	7	F	4	5	20	2	8
22	SOZ NOZ CSZ	8	8	5	7	F	8	5	2	5	8
18 - 22	NO2	6	₽.	12	9	5	11	2	5	5	22
	S	6	6	2	7	=	6	5	4	7	7.
	CS2 H2S	15 18	16 17	=	15 12	13 12	8	5 4	8	12 12	8
44 . 48			-		-	-					7
-	ž	11	\$	5	4	9	5	9	11	=	5
-	\$ 802	17	6	12	5	<u>+</u>	5	. 1	8	2	9
	22 H2	\$ \$	17 18	5	14 12	11 12	17 15	14 13	17 20	13 13	8t 8t
**	NO2 CS2 H2S SO2			-		12	6	12	5	17 11	-
1			- 1	=	18						
1	802		- 5	=	13 12	9	17 18	t5 5	77 77	15	17 20
-	22 H2S	-	=	4	12 1	=	6		4	7	6
1	6 - 10 NO2 CS2	18	5 2	12	16	12 14	-	£ ±	11	5	8
-	SO2 NC	85 85	1 4	5	=	7	8 8	5	8	5	8
	Hrs.	23	23.05.2025	03.05.2025	23.06.2025	-	24.04.2025	26.04.2025	04.04.2025 2	24.04.2025	26.04.2025 2
-	1 2 2	-		WEST	13	NORTH			SOUTH		

FORMAT - N.B.

Ambient air quality data at Nagda for the month of: April-2025

	4	0	COS SING	-	-		NO mic	COOL			Š	CS2 microars	SMAMS		172	TIOODIL.	HZS MICHOGRAMMS	1		P.M.I.D. HINGO DE STIEMES		2	_				
Sampling location	MONT	8	7			1			-	L	1	1	-	L	-	1	A M C C Dank	•	4		0	AM SD Pask GM		-	YW	SD	Peak
	& Year	u	Y.	S.D.	Peak	5	AM. S.D. Peak	S.C	2	1	<	0		1	-	E		1		-	+		_	-		,	L
EAST Fabrication Shop	Apr. 2025 12 17.6 1.7 20	12	17.6	1.7	8	2	17.3	6.	17.3 1.6 20		2 17	0	12 17.0 1.5 19		12 17.6 1.2		2 20	•	a 2		2.4	4		0	8	22	28
WEST Viehnu Bhawan	Apr. 2025 12 13.2 2.2 17	12	13.2	2.2	11	12	13.9	2.1	2.1 18		2 13	12 13.3 1.6	6 15		12	5	12 12.5 1.3 14	•	¥ .	-	1.1	4		ø	a	Ξ	23
NORTH Labour-Club	Apr. 2025	8	14.9	18 14.9 2.7 20	8	20	142	3.2	8	-	-	18 14.8 3.0	0	-	5 4	14.5 22	2 19		0	3.4	4	43			8	2.9	27
SOUTH	Apr. 2025 18 17.5 3.2 23	. 2	17.5	3.2	8	6	17.2	2.5	2.5 22		17	18 17.2 3.5	5 23	314	18 16.5	3.5 2.6	9	6	1	9 44 27	48	å 4		0	2	2.8	28
A Mary Standard Designary G M = Geometric mean n=number o	-Otanodard Da	Site	N	Geome	tric mea	In nanua	nber of c	of observation.	- tot	1	1	1	1	Z	ND = Not Detected	Detec	8				1	-			-		

24

2 2 2

101

A.M.=Arithmetic mean, S.D.=Standard Deviation, C.M.=Continuous instances of the continuous and H2S = 150 µg/m3 and H2S = 150 µg/m3 when the SO2 NO2 & SPM as per NAADM Standard and Premissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

FORMAT - II A

Ambient air quality data at Nagda for the month of : May-2025 All results expressed as Microgram/M3

Ois	dio	EAST		WEST		ORT		1500		20
Hrs.		06.05.2025	21.05.2025	08.05.2025	21.05.2025	NORTH 07.05.2025	22.05.2025	SOUTH 07.06.2025	22.06.2026	Below detectable Limit
	202	5	5	•	5	2	\$	6	2	1 96
8	NO2	14	9	13	5	11	5	. 6	91	
8 - 10	CS2	5	5	=	\$	2	8	2	12	
	HZS	4	7	9	12	Ξ	9	9	2	7.:.7
	802	=	9	12	91	Ŧ	81	8	13	Tracess
10 - 14		5	6	12	1	F	6	1	11	
14	NOZ CSZ HZS SOZ	*	9	=	5	=	9	5	2	2
H	42S SC	5	8	12	=	12	- 1	5	13	D: Not
-	1000	. at	15 17	15 10	2	15 12	17 20	18 18	12 12	ND: Not Detectedble
14 - 18	NO2 CS2	6	7 17	5	5	2 10	14	9 49	2 12	adbie
	2 H2S	5	1	=	5	=	4	9	13	
	H2S S02	8	8	2	7	2	\$5	4	‡	
18 - 22	NO2 CS2	2	2	=	9	5	11	2	5	
22	CS2		8	*	*	5	8	8	9	
	HZS	4	5	2	*	=	11	8	*	
-	802	12	8	5	4	72	2	2	5	
22 - 02	NO2	6	11	*	2	9	6	9	5	
20	CS2	5	11	12	5	*	8	11	9	
1	HZS	9	11	*	13	2	8	5	5	
L	802	5	9	=	9	2	9	8	12	
02 - 08	NO2	1 1	9	6	7	13	9	-	13	
T	CS2 H2S	18 20	17 16	=	=	12 12	17 18	16 16	7	
_	S S02	9	9	5	11	\$	6	8	5	
٦,	2 NO2	5	9	*	11	13	8	8	11	
-	Z CS2	5	8	5	5	*	8	8	92	
н	H2S	8	6	2	=	=	8	6	=	1
+	805	17.0	16.8	12.3	15.3	13.0	17.3	18.5	13.3	
	NO2	16.0	18.0	11.5	14.7	11.7	18.0	16.7	14.7	
è	CS2	16.3	16.7	12.8	13.5	11.7	18.0	17.2	13.0	
t	+	1000			TEL.			2 17.2	1	
-	H2S 8	17.8	16.2	12.5	11.8	11.8	16.5		13.5	
O HIS	6-14	Ŧ	\$	=	=	Ŧ	4	\$	=	
	14-22	9	\$	9	9	\$	9	42	9	
+	22-08	Ŧ	*	=	ŧ	9	•	2	=	
0 188	6.14	2	27	z	z	8	8	92	12	
	14-22	8	28	12	12	8	72	22	20	
	22-06	7	27	22	2	2	8	98	22	

FORMAT - II B

Ambient air quality data at Nagda for the month of: May-2025

Sampling Incation	Month	S	32 miore	orany	13	ž	Oz mio	TOOTEN	VM3		CS2 m	Croora	L/M3		HZS m	Crooran	MA		4	10 mic		2
No.	& Year	-	AM	S.D.	Peak	-	AM	SD	Peak	=	AM	S.D	Peak	_	A.M	S.L	. Peak	1	Y	I. S.L	Pea	G.N
SAST	May-2025	12	12 16.9 1.4	3	9	12	12 17.0 2.0	2.0	9	12	12 16.5	7	6	#	12 17.0 1.7 20	1.7	8	•	& &	2.4	\$	\$
Febrication Shop	May-2025	12	12 13.8 2.2	2.2	11	12	13.1	23	12 13.1 2.3 17	12	13.2	12 13.2 1.5	\$5	#	12 12.2	=	12.2 1.5 14		÷	0.5	\$	Ŧ
Vishnu Bhawan VORTH	May-2025	12	12 15.2 2.6	2.6	6	12	12 14.8 3.4	3.4	8	12	12 15.3		4	12		14.2 2.5	92	•	\$	3.2	\$	\$
SOUTH SOUTH	Mey-2025	12	12 15.9 2.8 20	2.8	8	12	12 15.7 1.8 18	1.8	82	12	15.1	12 15.1 2.8	8	12	12 15.3 2.2	2.2	6	•	8 42	2	\$	42

Loss M. #Arithmetic mean. S.D. = Standard Deviation, G.M. #Geometric mean.n=number of observation.

Note: Norms for SO2, NO2, PM10 & PM2.5 as per National Ambient Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3.

	PM2.5	microgra	m/M3	H
c	A.M.	S.D.	Peak	S
	52	1.6	72	25
9	22	7.0	8	22
9	8	3.0	27	23
9	23	2.5	92	8

FORMAT - II A

Ambient air quality data at Nagda for the month of : June 2025

1	1		8. 10	10	1		10 - 14	1	T		14 - 18	18			18 - 2	22			22 - 02	22 22 - 02			ŏ	02 - 08			*	4Hrs M	Max.	+		24Hrs Avg	OA.		8	8 Hrs Avg. PM10	PM10	₩	اق	8 Hrs. Avg. PM2.6
5 5	Date	SO2	Š	CS2	H2S	202	NO	CS2	H ₂ S	SO2	NO2	CS2	HzS	SO2	Š.	cs2	H ₂ S	202	NO2	CS ₂	H ₂ S	SO		NO, CS,	Sz HzS	\$ 502	-	NO	CS ₂	H ₂ S	203	NO ₂	CS2	S ² H	8-14 4-14	14-22	22-08	6-14		14-22
EAST	04.08.2025	9	9	=	2	7	9	õ	12	8	45	8	17	11	1	23	9	•	8	2	11	\$	5	8	5	8		- 6	-	- 1	1 1.71	17.2	19.7	15.2	\$	â	\$	52		7
	15.06.2025	*	8	1	9	5	11	5	2	9	9	11	9	2	85	9	8	9	8	8	8	2	- 6		11 11	1 21		20	19 2	20 18	18.8	18.8	17.2	18.2	4	\$	\$	77		8
	23.06.2025	\$5	1	13	5	•	8	*	. 6	*	11	9	11	8	9	5	20	9	9	6	8	*	=	8	17	20	-	19	20	20 ==	16.8	16.8	16.2	17.2	4	\$	\$	88		98
WEST	04.06.2025	2	9	•	5	5	5	12	•	*	2	5	5	9	5	12	12	=	12	=	ξ.	=	12		10 12	9		<u>•</u>	13	12 13	13.7	14.0	11.2	10.7	\$	8	\$	22		22
	15.06.2025	12	9	ī	5	=	۰	Ξ	5	5	12	=	5	2	13	9	*	12	Ξ	2	5	=	2		=	=		13	-	*	12.2	10.8	12.0	11.8	\$	¥	8	2		8
-4	23.06.2025	2	5	=	13	9	Ξ	5	=	13	5	0	12	Ξ	12	=	9	5	2	. 00	0	5	=	=	1 12	13		-	=	13	11.5	11.7	10.2	11.2	8	8	37	22		8
NORTH	06.06.2025	9	2	*	2	5	5	=	5	=	a	2	۰	12	Ŧ	5	5	12	5	9	Ξ	5	- 2		11 12	13		12	-	13	11.3	10.7	11.5	11.2	\$	98	37	22	7.12.12	8
+,	17.06.2025	12	Ξ	9	2	5	13	0	=	9	12	=	9	*	=	5	13	=	\$	5		13	12		5	-		13	13	13	12.2	11.5	10.8	11.0	8		\$	8		8
NOCTH	06.06.2025	8	7	11	=	6	5	9	2	7	6	22	5	5	8	8	9	12	12	11	8	5	8	-	20 18	8		21 2	7	81	15.3	17.5	18.7	16.2	41	\$	4	8		22
	17.06.2025	17	2	20	8	6	8	2	9	8	6	8	22	8	12	8	12	2	22	2	8	2	20	-	17 21	*		22	21 2	22	19.8	20.7	19.5	20.5	\$	4	\$	8		12

FORMAT - II B

Ambient air quality data at Nagda for the month of: June 2025

Samuling location	Month		SO, uo/m	,E	_	Ž	2 100	-			500	-			250		The second		-						l	١		1
in the second second		ľ		O Des	I	AM SO Pask	0	Pes	L	A	N	AM SD P	Peak	5	AN	SD	n A.M. S.D. Peak		n A	N.	D. Per	A.M. S.D. Peak G.M		n A.M. S.D. Peak G.M	W.	.D. P.	ak G	Z.
	D 188	-	ė.	2	1			-	1	1			,	ľ			8	_	0	9		44		0	26	8	86	38
EAST	Jun. 2025	18 1	7.8 2.	2	-	18 17	9	8		9	1.1	17.7 2.3 2.1			10.		10.0 4.0			2		2	-		-	,	1	1
Fabrication Shop WEST	Jun. 2025	18	18 12.4 1.6	•	90	18 12.2	2 1.9	9		80	7	11.1 1.5 14	2	-	1,	2 17	18 11.2 1.4 14		0	-	•	9 39 1.9 41 39	-	0	21	0	22	2
Vishnu Bhawan NORTH	Jun. 2025	121	12 11.8 1.3	4		17 11.1	17	13		12	7.7	12 11.2 1.5 14	2	-	11.	-	12 11.1 1.3 13		•	-	-	98		9	21 1.1 23		2	21
Labour-Club SOUTH	Jun. 2025	12 17.6 3.4 24	7.6	4		12 19.1		8		12	19.1	9.	22	-	12 18.3	3 2.5	22		0	1	2	4			22	6.	2	27
Dairy			-	-	1	-	-	-	1	1	1	1	1	1	1	-	-	1	1	1	1	1	-	1	1	1	1	1

A.M.=Arithmetic mean, S.D.=Standard Deviation, G.M.= Note: Norms for SO2, NO2, PM10 & PM2.5 as per Nat

t Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

Pane 1 of 1

FORMAT - II A

Ambient air quality data at Nagda for the month of : Ap

	22-08	*	27	8	8	2	21	27	27	8	2
	14-22	8	12	8	<u>6</u>	8	22	8	88	83	R
	6-14	2	28	8	8	2	23	27	27	8	2
	22-08	1	*	ţ	=	\$	Ŧ	4	8	\$	8
	6-14 14-22	4	\$	9	8	98	\$	\$	\$	14	8
-	6-14	4	\$	Ŧ	Ŧ	9	÷	4	\$	\$	8
	HZS	15.5	17.5	10.8	11.8	11.2	11.7	17.5	16.3	19.3	112 ·
CALIES AVG	CSS	7.77	16.7	11.2	11.3	11.8	12.2	16.3	17.7	19.0	10.7
1	NO2	16.3	18.5	14.2	12.8	10.5	12.0	16.8	17.0	19.8	11.2
1	205	16.5	18.8	13.3	12.7	12.0	11.7	16.5	15.3	19.3	10.2
1	HZS	4	8	5	15	5	5	8	6	72	5
-	CS2	8	6	5	2	2	7	6	8	2	2
ı	NO2	6	8	5	\$	12	5	ē	9	2	ā
	802		8	5	2	7	7	6	8	2	=
1	HZS	5	\$	F	9	13	=	1	1	9	5
8	CSS	5	9	o	2	12	7	5	20	8	Ξ
02 - 08	NO2 CS2	6	9	15	15	=	12	5	6	6	2
-	802	4	4	1	12	4	12	6	9	72	===
	H2S	11	11	#	13	F	12	11	8	8	F
05	NO2 CS2	8	8	£	2	9	5	2	4	2	9
22 - 02		11	6	12	7	9	12	92	1	23	0
	802	22	ŧ.	15	12	F	F	6	12	8	0
	HZS	9	8	5	5	5	5	80	5	8	5
22	CS2	8	6	42	9	12	5	7	5	8	5
18 - 22	2 NO2	5	6	15	5	12	Ξ	6	20	2	5
The state of	H2S SO2 NO2	4	8	= =	*	5	5	1	5	5	2
	CS2 H2	95	17 19	13 9	5	0 0	12 10	16 17	20 16	2	12
14 - 18						_	-7	to -		2	
	NO2	ą	9	2	12	0	12	11	\$	ę.	4
	S SO	5	5	7	13	5	2 2	7	7	8	0
	S2 H2	ă 2	15 18	12 10	11 12	5	11 12	5 5	16 5	51	5
10-14	NO2 CS2 H2S SO2	1 1	8	5	12	9	- 5	- e	-	8 +	=
	SO2 N	- ±	- 81	- F	=	5	=	- t	1 1	<u>-</u>	9
-	H2S SC	15	6	=	=	*	-	20	15	8	F .
			- £	0	12	- -	=	17	16	+	9
8 - 10	NO2 CS2	. 21	14	7	=	=	12	10	15	24	£
F	SO2 NC	15 11	- 8	12	2	-	2	- P	6 5	5	=
H		03.07.2025	16.07.2025 2	03.07.2025	16.07.2025	05.07.2025	18.07.2025	1 2202.70.72	05.07.2025	18.07.2025	27.07.2025
9	Sign	-		WEST		NORTH		.,	SOUTH		

FORMAT - II B

Ambient air quality data at Nagda for the month of: April-2025

Germina Incetion	Month SO2 microgram/M3	3	2		2				2		3	CONTRIGUE STRINGS	CHARLE		250	5		,											١
Company of the Company		•	×	SD	Peak	5	A.M. S.	SD	D. Pesk	-	Y	I S.L	n A.M. S.D. Peak	_	c	LM.	n A.M. S.D. Peak	aak	•	n A.M. S.D. Peak G.M.	S.D.	Pea	G.M.		Y .	n A.M. S.D. Peak G.M.	Pe	S. G.	ΣI
EAST Fabrication Shop	Jul. 2025 12 17.7 1.7 20	5	17.7	1.7	8	5	12 17.4	-	8	12	17.2	2 20	8	4	12 1	16.5	1.7	8	0		8.0	\$	\$	_	8	1.6	8	*	10
WEST Vishnu Bhawan	Jul. 2025 12 13.0 1.3 15	12	13.0	1.3	15		12 13.5	3	\$	12		=======================================	11.3 1.1 13		12	. 12 11.3 1.6		13	0	4	0.5		4	_	8 21	1.6	23	2	
Labour-Club	Jul. 2025 18 13.4 2.6 19 18 13.1	5	13.4	2.6	9	- 2	13.1		6	18	13.4	4 2.5	5		13.4	3.4	3.1	8	0		3.0	47	4		6 53	2.6	27		-
SOUTH	Jul. 2025 18 14.9 4.0 21 18 16.0	6	14.9	9	21	8	16.0	3.9	2	85	15.8	8 4.0	2		18 15.6	9.6	3.5	23	O		9.6	4	64		52	2.9	78		-
The second secon					1	-	-	-		1	-	1	1	1	1	Part Colonia	1	1	-			-	1		-		1	1	1

A.M.=Arithmetic mean, S.D.=Standard Deviation, G.M.=Geometric mean,n=number of observation.

** Norms for SO2, NO2 & SPM as per NAAQM Standard and Premissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

** Norms for SO2, NO2 & SPM as per NAAQM Standard and Premissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

FORMAT - II A

DOC.FENC - 04

Ambient air quality data at Nagda for the month of : August-2025 All results expressed as Microgram/M3

1	-			40	0	1		10.14		-	ſ	14. 18		-	18 - 22	22			22 - 02	05		-	8 - 70		-	4HIS	-	ŀ	+	L	-	t	1		1	L	+	
8	١	H3.		6	2	1	1	1	1		1	-	-	1	-		000	000	NOS	ces	SCH	203	NO2	CS2 H2	H2S S02	NO2	12 CS2	2 H2S	S S02	2 NO2		CS2 H	HZS 6	6-14 14	14-22 2	22-08		8 6-14 14-22
ction	-	Date	202	NO2	CS2	HZS	205	N02	NO2 CS2 H2S		SOZ	NOZ	CSZ HZS	2005	Ž	700	1160	-		300	2			-		_	_	-	-	L								
EAST		04 08 2025	9	5	5	9	1	2	=	28	18	- 6	17 14	6	8	18	15	91	19	5	11	2	*	=	18 21	2	8	8	17.8	16.3	3 14.2		17.2	\$	\$	\$		22 22
	100	18 08 2025	80	5	5	11	5	1	6	- 5	- 5	5	118 17	1 1	9	9	18	20	81	9	6	6	8	20 1	17 20	- 6	8	6	17.3	3 17.0	18.2		17.2	\$	4	9	8	22
WEST	110.00	04 08 2025	12	5	12	9	=	2	2	12	-	=	=======================================	5	5	13	15	12	5	5	2	Ξ	2	15	16 15	5	5	9	11.8	12.8	13.0		13.5	•	9	Ŧ	2	2
		18 08 2025	=	9	12	12	12	0	- 21	=	*	13	10 13	3 12	12	a	9	F	ŧ.	£	0	\$	4	=	11	13	=	5	12.5	5 11.5	11.7		11.2	42	9	42	73	2
Lack	1 8	NORTH OS OR 2025	. 9	=	=	2	12	2	9	*	-	13	13 13	3 12	2	12	12	13	13	*	=	12	2	12	13 14	5	7	=	12.2	12.7	7 12.0		13.0	÷	9	=	23	22
	9	19 08 2025	9	12	=	5	12	12	2	=	12 1	9	=======================================	5	12	#	13	9	0	5	2	2	5	*	4 15	5	= =	\$	122	11.3	3 12.2		13.3	42	=	4	2	8
2008	E 8	SOUTH 05.08.2025	1	9	5	=	8	11	5	*	*	18	12 12	2 45	5	o	5	2	9	6	15	6	8	*	15 18	8	9	\$	16.0	0 18.0	-	13.2	13.3	8	\$	\$	12	8
	6	19.06.2025	2	12	F	Ę	5	\$	5	5	12	16	12 12	2 12	15	2	12	2	6	12	*	5	5	7	12 15	5	=	7	13.7	7 14.5	5. 12.7	7	12.3	\$	3	45	52	2
9		Below detectable Limit	Ne Lim	_		1 =	Tr.: Tracess		-	ND: Not Detectedble	1 Detec	sedble					1		-																			

FORMAT - II B

Ambient air quality data at Nagda for the month of : August-2025

Complian location	Month	S	O2 mich	voram/	EN	z	NO2 microgram/M3	TOOL	W3		3K IIIC	CSZ microgramms	NIC.	1	CHINE COUNTY		
Carlotte of Posterior	A. Vaner	•	MA	SD	Peak	-	A.M.	S.D.	Peak	=	Y	S.D.	Peak	-	Y.K	0.0	-
1047	Aurana 2006	12	12 17.6 1.8 21	1.8	2	12	12 16.7 2.0 20	2.0	8	12	16.2	12 16.2 3.1 20	8	- 2	12 17.2 1.7 3	1.7	
Fabrication Shop	August 2025	5	12 12.2 1.6 15	1.6	5	12	12 122 1.8 15	1.8	5	12	12.3	12 12.3 1.6 15	15	12	12 12.3 2.0	2.0	
Vishnu Bhawan	ACC 100 A	12	12 12.2 1.6 15	1.6	5	12	12 12.0 1.7 15	1.7	5	12	12 12.7	-	2	12	12 13.2 1.1	7	
Labour-Club	August 2028	. 5	12 14.8 1.9 18	9	8	12	12 16.3 2.2 20	2.2	8	12	12.9	12 12.9 1.8 16	9	12	12 12.8 1.3	1.3	
Dairy																-	-

sible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3

-		1	CHILD	-
-	A.M.	S.D.	Pesk	G
	58	8.0	98	25
	22	0.7	23	22
9	22	7	23	22
90	98	7	72	56

45 42

8.0 0.7

Ŧ

0.7

15

FORMAT - II A

Ambient air quality data at Nagda for the month of : September 2025

Horison Hori
Not Color
10 10 10 10 10 10 10 10 10 10 10 10 10 1
10 - 14 10 14 15 15 18 18 18 18 18 18
10 14 15 14 15 15 15 15 15
10 - 14
14 15 15 16 15 16 16 17 18 18 18 18 18 18 18
14 15 15 15 15 15 15 15
14 16 18 18 18 18 19 17 19 19 15 18 18 19 17 17 17 17 18 18 18 18
14 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15
H-S SO-S NO-S NO-S NO-S SO-S NO-S NO-S SO-S S
18 13 12 14 15 16 16 16 16 16 16 16
18. 19.
CS ₂ H ₂ S CS ₂ H ₁ S Max. 24HIS ANG. CS ₂ H ₃ S CS ₄ S CS ₄ H ₃ S CS ₄ S CS ₄ S
H-S SO-NO-CS-H-S S
22 - 02 NO. CS. HyS <
02 O2 - O6 4Hs Max. 24Hs Avg. 03 05 Hs Avg. 04Hs Avg. 05 05 Hs Avg. 06 05 14 42 44 42 44 42 20 20 16 16 16 17.2 16.8 17.3 44 43 44 22 20 16 16 16 17.2 16.8 17.3 44 43 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 44 42 44
02 O2 - O6 4Hs Max. 24Hs Avg. 03 05 Hs Avg. 04Hs Avg. 05 05 Hs Avg. 06 05 14 42 44 42 44 42 20 20 16 16 16 17.2 16.8 17.3 44 43 44 22 20 16 16 16 17.2 16.8 17.3 44 43 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 42 44 44 42 44
102 - 06 4148 Max. 24148 Ayg. 24148 Ayg. 10418 Ayg.
O2 - O6 4+Hs Max. 24+Hs Avg. 24+Hs Avg. O Hs Avg. <t< td=""></t<>
CS ₂ Hys SO ₂ NO ₂ CS ₂ Hys 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-1.7 22-1.7 22-1.7 22-1.
CS ₂ Hys SO ₂ NO ₂ CS ₂ Hys 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 6-14 14.22 22-0.6 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-0.7 14.22 22-1.7 22-1.7 22-1.7 22-1.
SO, NO, CS, HyS SO, NO, CS2, HyS 6-14 14-22 SO,
4+1s Max. 24+1s Avg Column Av
Max. 24His Ang 6 His Ang 7 H
Hys. So.2 No.3 CS2 Hys. B.Hs.Avg. PM10 B Hs.Avg. PM10
SQATES ANG B HES ANG PHES ANG
17.2 16.8 17.3 44 43 44 22 20 6 14 14.22 17.0 6 14 14.22 17.0 6 14 14.22 17.0 6 14 14.22 17.0 6 14 14.22 17.0 6 14 14.22 17.0 6 14 14.22 17.0 6 14 14.2 17.0 17.2 16.8 17.3 44 43 44 22 20 19 13.7 10.8 11.5 39 40 39 20 19 13.3 11.0 12.3 40 39 40 24 23 19.0 10.8 11.7 11.2 43 42 43 23 24 19.2 17.0 12.0 44 45 44 45 24 23 18.2 18.2 18.8 47 49 47 24 23
16.8 17.3 44 43 44 22 20 16.8 17.3 44 43 44 22 20 13.5 13.7 39 38 39 18 19 10.8 11.5 39 40 39 20 19 11.0 12.3 40 39 40 24 23 12.0 12.0 44 45 24 23 17.8 18.8 47 48 47 24 23
b H ₂ S 6-14 14-22 22-06 6-14 14-22 1 1.5 6-14 14-22 22-06 6-14 14-22 2 16.3 42 41 42 21 20 2 16.3 42 41 42 21 20 8 11.5 39 40 39 18 19 9 11.5 39 40 39 20 19 1 12.3 40 39 40 24 23 1 11.2 43 42 43 23 24 1 11.2 43 44 45 22 20 1 12.0 44 45 24 23 24 1 12.0 44 45 24 23 24 1 18.8 47 48 47 24 23
6-14 14.22 22-06 6-14 14.22 44 43 44 22 20 49 39 39 18 19 19 39 40 39 20 19 40 39 40 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 44 45 24 23 44 45 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 45 24 23 44 45 44 44
43 44 22 20 41 42 21 20 38 39 18 19 40 30 20 19 40 24 23 44 45 22 20 42 43 23 24 44 45 24 23 48 47 24 23
22 20 21 20 14 22 20 24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
22 20 21 20 14 22 20 24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Ambient air quality data at Nagda for the month of: September 2025

Campling location	Month	S	0	S/m3		Z	O, III	/m³			cs	E/OI			E P	101			Ž.	PM10 microgram/M3	medico	W3		-	PMZ 5 microgram/M3	ogram	IMS	+
The state of the s	- New	-	N	D D	Ta	A	N	D IPe	la la	-	AM	SD	Peak	-		SD	A.M. S.D. Peak	Ľ	AN	I.S.). Pea	K G.M		n A	M. S	D. P.	ak (Z.
EAST	Sep. 2025	18	5.8	2.2	8	18 15.6 2.6 19	5.6	97	0	18	16.2	16.2 2.6	20	=	3 15.6	1 2.3	20		4	1 2	4	41 2.1 44 41	6	6	20 1.4 22	•	100	8
Fabrication Shop WEST	Sep. 2025	18 15.4 3.2	5.4	77	21	18 15.5	5.5	3.2 2	22	*	¥	14.1 4.6	8	=	7	3.3	18 14.1 3.3 20		4	41 2.5	45	4	•		22	80		2
Vishnu Bhawan NORTH	Sep. 2025	12 11.5 1.2	1.5		*	12 11.6		7	13	12	11.8	12 11.8 1.5 14	2	=	11.6	9.1	12 11.6 1.6 14	4	6	43 0.7	1	4	•		23 0.6 24	9.0		23
Labour-Club SOUTH	Sep. 2025 12 18.1 1.9	12 1	1.0	6.	21	12 18.5	8.5	1.6 21	-	12	18.0	12 18.0 1.6	21	=	12 19.3	1.3	21		94	46 1.4	4	\$	9	-	24	9.0	24	24
Dairy								-						-		1		-	4	-	1			1	1	1	1	

A.M.=Arithmetic mean, S.D.=Standard Deviation, G.M.=Geometric mean,n=number of observation.

Note: Norms for SO2 ,NO2 , PM10 & PM2,5 as per National Ambient Air Quality Standards and Permissible limit for CS2 = 100 µg/m3 and H2S = 150 µg/m3.